首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synthesis, Crystal Structures, and Vibrational Spectra of trans ‐[Pt(N3)4(ECN)2]2–, E = S, Se By oxidative addition to (n‐Bu4N)2[Pt(N3)4] with dirhodane in dichloromethane trans‐(n‐Bu4N)2[Pt(N3)4(SCN)2] and by ligand exchange of trans(n‐Bu4N)2[Pt(N3)4I2] with Pb(SeCN)2 trans‐(n‐Bu4N)2[Pt(N3)4(SeCN)2] are formed. X‐ray structure determinations on single crystals of trans‐(Ph4P)2[Pt(N3)4(SCN)2] (triclinic, space group P 1, a = 10.309(3), b = 11.228(2), c = 11.967(2) Å, α = 87.267(13), β = 75.809(16), γ = 65.312(17)°, Z = 1) and trans‐(Ph4P)2[Pt(N3)4(SeCN)2] (triclinic, space group P 1, a = 9.1620(10), b = 10.8520(10), c = 12.455(2) Å, α = 90.817(10), β = 102.172(10), γ = 92.994(9)°, Z = 1) reveal, that the compounds crystallize isotypically with octahedral centrosymmetric complex anions. The bond lengths are Pt–S = 2.337, Pt–Se = 2.490 and Pt–N = 2.083 (S), 2.053 Å (Se). The approximate linear Azidoligands with Nα–Nβ–Nγ‐angles = 172,1–175,0° are bonded with Pt–Nα–Nβ‐angles = 116,7–120,5°. In the vibrational spectra the platinum chalcogen stretching vibrations of trans‐(n‐Bu4N)2[Pt(N3)4(ECN)2] are observed at 296 (E = S) and in the range of 186–203 cm–1 (Se). The platinum azide stretching modes of the complex salts are in the range of 402–425 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS) = 1.64, fd(PtSe) = 1.36, fd(PtNα) = 2.33 (S), 2.40 (Se) and fd(NαNβ, NβNγ) = 12.43 (S), 12.40 mdyn/Å (Se).  相似文献   

2.
Synthesis, Crystal Structures, and Vibrational Spectra of trans ‐[Pt(N3)4X2]2–, X = Cl, Br, I By oxidative addition to (n‐Bu4N)2[Pt(N3)4] with the elemental halogens in dichloromethane trans‐(n‐Bu4N)2[Pt(N3)4X2], X = Cl, Br, I are formed. X‐ray structure determinations on single crystals of trans‐(Ph4P)2[Pt(N3)4Cl2] (triclinic, space group P1, a = 10.352(1), b = 10.438(2), c = 11.890(2) Å, α = 91.808(12), β = 100.676(12), γ = 113.980(10)°, Z = 1), trans‐(Ph4P)2[Pt(N3)4Br2] (triclinic, space group P1, a = 10.336(1), b = 10.536(1), c = 12.119(2) Å, α = 91.762(12), β = 101.135(12), γ = 112.867(10)°, Z = 1) and trans‐(Ph4P)2[Pt(N3)4I2] (triclinic, space group P1, a = 10.186(2), b = 10.506(2), c = 12.219(2) Å, α = 91.847(16), β = 101.385(14), γ = 111.965(18)°, Z = 1) reveal, that the compounds crystallize isotypically with octahedral centrosymmetric complex anions. The bond lengths are Pt–Cl = 2.324, Pt–Br = 2.472, Pt–I = 2.619 and Pt–N = 2.052–2.122 Å. The approximate linear Azidoligands with Nα–Nβ–Nγ‐angles = 172.1–176.8° are bonded with Pt–Nα–Nβ‐angles = 116.2–121.9°. In the vibrational spectra the platinum halogen stretching vibrations of trans‐(n‐Bu4N)2[Pt(N3)4X2] are observed in the range of 327–337 (X = Cl), at 202 (Br) and in the range of 145–165 cm–1 (I), respectively. The platinum azide stretching modes of the three complex salts are in the range of 401–421 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtCl) = 1.90, fd(PtBr) = 1.64, fd(PtI) = 1.22, fd(PtNα) = 2.20–2.27 and fd(NαNβ, NβNγ) = 12.44 mdyn/Å.  相似文献   

3.
Crystal Structures, Spectroscopic Analysis, and Normal Coordinate Analysis of ( n ‐Bu4N)2[M(ECN)4] (M = Pd, Pt; E = S, Se) The reaction of (NH4)2[PdCl4] or K2[PtCl4] with KSCN or KSeCN in aqueous solutions yields the complex anions [Pd(SCN)4]2–, [Pt(SCN)4]2– and [Pt(SeCN)4]2–, which are converted into (n‐Bu4N) salts with (n‐Bu4N)HSO4. (n‐Bu4N)2[Pd(SeCN)4] is formed by treatment of (n‐Bu4N)2[PdCl4] with (n‐Bu4N)SeCN in acetone. X‐ray structure determinations on single crystals of (n‐Bu4N)2[Pd(SCN)4] (monoclinic, space group P21/n, a = 13.088(3), b = 12.481(2), c = 13.574(3) Å, β = 91.494(15)°, Z = 2), (n‐Bu4N)2[Pd(SeCN)4] (monoclinic, space group P21/n, a = 13.171(2), b = 12.644(2), c = 13.560(2) Å, β = 91.430(11)°, Z = 2) and (n‐Bu4N)2[Pt(SeCN)4] (monoclinic, space group P21/n, a = 13.167(2), b = 12.641(1), c = 13.563(2) Å, β = 91.516(18)°, Z = 2) reveal, that the compounds crystallize isotypically and the complex anions are centrosymmetric and approximate planar. In the Raman spectra the metal ligand stretching modes of (n‐Bu4N)2[Pd(SCN)4] ( 1 ) and (n‐Bu4N)2[Pt(SCN)4] ( 3 ) are observed in the range of 260–303 cm–1 and of (n‐Bu4N)2[Pd(SeCN)4] ( 2 ) and (n‐Bu4N)2[Pt(SeCN)4] ( 4 ) in the range of 171–195 cm–1. The IR and Raman spectra are assigned by normal coordinate analysis using the molecular parameters of the X‐ray determination. The valence force constants are fd(PdS) = 1.17, fd(PdSe) = 1.17, fd(PtS) = 1.44 and fd(PtSe) = 1.42 mdyn/Å. The 77Se NMR resonances are 23 for 2 , –3 for 4 and the 195Pt NMR resonances 549 for 3 and 130 ppm for 4 .  相似文献   

4.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

5.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of trans ‐( n ‐Bu4N)4[Pt(ECN)2(ox)2], E = S, Se By reaction of (n‐Bu4N)2[Pt(ox)2] with (SCN)2 and (SeCN)2 in dichloromethane trans‐(n‐Bu4N)2[Pt(SCN)2(ox)2] ( 1 ) und trans‐(n‐Bu4N)2[Pt(SeCN)2(ox)2] ( 2 ) are formed. The crystal structures of 1 (triclinic, space group P1, a = 10.219(2), b = 11.329(2), c = 12.010(3) Å, α = 114.108(15), β = 104.797(20), γ = 102.232(20)°, Z = 1) and 2 (triclinic, space group P1, a = 10.288(1), b = 11.332(1), c = 12.048(1) Å, α = 114.391(9), β = 103.071(10), γ = 102.466(12)°, Z = 1) reveal, that the compounds crystallize isotypically with centrosymmetric complex anions. The bond lengths are Pt–S = 2.357, Pt–Se = 2.480 and Pt–O = 2.011 ( 1 ) und 2.006 Å ( 2 ). The oxalato ligands are nearly plane with O–C–C–O torsion angles of 1.7–3.6°. The via S or Se coordinated linear groups are inclined between both oxalato ligands with Pt–E–C angles of 100.4 (E = S) and 97.4° (Se). In the vibrational spectra the PtE stretching vibrations are observed at 299–314 ( 1 ) and 189–200 cm–1 ( 2 ). The PtO stretching vibrations are coupled with internal vibrations of the oxalato ligands and appear in the range of 400–800 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS) = 1.75, fd(PtSe) = 1.35 and fd(PtO) = 2.77 mdyn/Å. The NMR shifts are δ(195Pt) = 5435.2 ( 1 ), 5373.7 ( 2 ) and δ(77Se) = 353.2 ppm with the coupling constant 1J(SePt) = 37.4 Hz.  相似文献   

6.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of ( n ‐Bu4N)2[Os(NCS)6] and ( n ‐Bu4N)3[Os(NCS)6] By tempering the solid mixture of the linkage isomers (n‐Bu4N)3[Os(NCS)n(SCN)6–n] n = 0–5 for a longer time at temperatures increasing from 60 to 140 °C the homoleptic (n‐Bu4N)3[Os(NCS)6] is formed, which on oxidation with (NH4)2[Ce(NO3)6] in acetone yields the corresponding OsIV complex (n‐Bu4N)2[Os(NCS)6]. X‐ray structure determinations on single crystals of (n‐Bu4N)2[Os(NCS)6] (1) (triclinic, space group P 1, a = 12.596(5), b = 12.666(5), c = 16.026(5) Å, α = 88.063(5), β = 80.439(5), γ = 88.637(5)°, Z = 2) and (n‐Bu4N)3[Os(NCS)6] ( 2 ) (cubic, space group Pa 3, a = 24.349(4) Å, Z = 8) have been performed. The nearly linear thiocyanate groups are coordinated with Os–N–C angles of 172.3–177.7°. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constant fd(OsN) is 2.3 ( 1 ) and 2.10 mdyn/Å ( 2 ).  相似文献   

7.
Synthesis and Spectroscopic Characterization of [Rh(SeCN)6]3– and trans ‐[Rh(CN)2(SeCN)4]3–, Crystal Structure of (Me4N)3[Rh(SeCN)6] Treatment of RhCl3 with KSeCN in acetone yields a mixture of selenocyanato‐rhodates(III), from which [Rh(SeCN)6]3– and trans‐[Rh(CN)2(SeCN)4]3– have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The X‐ray structure determination on a single crystal of (Me4N)3[Rh(SeCN)6] (trigonal, space group R3, a = 14.997(2), c = 24.437(3) Å, Z = 6) reveals, that the compound crystallizes isotypically to (Me4N)3[Ir(SCN)6]. The exclusively via Se coordinated selenocyanato ligands are bonded with the average Rh–Se distance of 2.490 Å and the Rh–Se–C angle of 104.6°. In the low temperature IR and Raman spectra the metal ligand stretching modes ν(RhSe) of (n‐Bu4N)3[Rh(SeCN)6] ( 1 ) and trans‐(n‐Bu4N)3[Rh(CN)2(SeCN)4] ( 2 ) are in the range of 170–250 cm–1. In 2 νas(CRhC) is observed at 479 cm–1. The vibrational spectra are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(RhSe) = 1.08 ( 1 ), 1.10 ( 2 ) and fd(RhC) = 3.14 mdyn/Å ( 2 ). fd(RhS) = 1.32 mdyn/Å is determined for [Rh(SCN)6]3–, which has not been calculated so far. The 103Rh NMR resonances are 2287 ( 1 ), 1680 ppm ( 2 ) and the 77Se NMR resonances are –32.7 ( 1 ) and –110.7 ppm ( 2 ). The Rh–C bonding of the cyano ligand in 2 is confirmed by a dublett in the 13C NMR spectrum at 136.3 ppm.  相似文献   

8.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of (Ph4P)2[OsN(N3)5] and 15N NMR Chemical Shifts of Nitridoosmates(VI, VIII) The treatment of (Ph4P)[OsNCl4] with NaN3 yields (Ph4P)2[OsN(N3)5], which crystal structure has been determined by single crystal X‐ray diffraction analysis (monoclinic, space group P 21/a, a = 20.484(6), b = 11.168(1), c = 20.666(4) Å, β = 97.35(3)°, Z = 4). The IR and Raman vibrations were assigned by a normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(Os≡N) = 8.52, fd(Os–Nα) = 1.99, fd(Nα–Nβ) = 12.42, fd(Nβ–Nγ) = 12.73 and for the azido ligand in trans‐position to the nitrido group fd(Os–Nα · ) = 1.84, fd(Nα · –Nβ · ) = 11.91, fd(Nβ · –Nγ · ) = 12.18 mdyn/Å. The 15N NMR spectra of various nitridoosmates reveal the chemical shifts δ(15N) for K[OsO315N] = 387.6, K2[Os15NCl5] = 446.7, (Ph4P)[Os15NCl4] = 352.9, [(n‐C6H13)4N]2[Os15N(N3)5] = 307.3 and for [(n‐Pr)4N]2[Os15N(15NCO)5] = 483,7 (Os≡N), –417,7 (OsNCOeq) und –392,8 ppm (OsNCOax).  相似文献   

9.
Crystal Structures, Normal Coordinate Analyses, and 15N NMR and 77Se NMR Chemical Shifts of trans ‐[OsO2(NCO)4]2–, trans ‐[OsO2(NCS)4]2–, and trans ‐[OsO2(SeCN)4]2– The crystal structures of trans‐(Ph3PNPPh3)2[OsO2(NCO)4] ( 1 ) (orthorhombic, space group Pbca, a = 19.278(3), b = 16.674(4), c = 19.982(2) Å, Z = 4), trans(n‐Bu4N)2[OsO2(NCS)4] ( 2 ) (triclinic, space group P1, a = 12.728(3), b = 12.953(3), c = 16.255(6) Å, α = 97.39(4), β = 105.62(2), γ = 95.25(3)°, Z = 2) and trans‐(n‐Bu4N)2[OsO2(SeCN)4] ( 3 ) (tetragonal, space group I4/m, a = 13.406(2), c = 12.871(1) Å, Z = 2) have been determined by single‐crystal X‐ray diffraction analysis, showing the bonding of NCO and NCS via the N atom but the coordination of SeCN via the Se atom to osmium. Based on the molecular parameters of the X‐ray determinations the vibrational spectra have been assigned by normal coordinate analyses. The valence force constants are for 1 fd(OsO) = 6.43, fd(OsN) = 3.32, fd(NC) = 14.50, fd(CO) = 12.80, for 2 fd(OsO) = 6.56, fd(OsN) = 1.75, fd(NC) = 15.00, fd(CS) = 5.50, and for 3 fd(OsO) = 6.75, fd(OsSe) = 0.99, fd(SeC) = 3.23, fd(CN) = 15.95 mdyn/Å. The observed NMR shifts are δ(15N) = –386.6 ( 1 ), δ(15N) = –294.7 ( 2 ) and δ(77Se) = 108.8 ppm ( 3 ).  相似文献   

10.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of cis‐ and trans‐(n‐Bu4N)2[PtF2(ox)2] and (n‐Bu4N)2[PtF4(ox)] By treatment of trans‐(n‐Bu4N)2[PtCl2(ox)2] and (n‐Bu4N)2[PtCl4(ox)] with XeF2 in propylene carbonate cis‐ and trans‐(n‐Bu4N)2[PtF2(ox)2] ( 1 , 2 ) and (n‐Bu4N)2[PtF4(ox)] ( 3 ) are formed which have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The crystal structure of trans(n‐Bu4N)2[PtF2(ox)2] ( 2 ) (tetragonal, space group P42/n, a = 15.5489(9), b = 15.5489(9), c = 17.835(1)Å, Z = 4) und Cs2[PtF4(ox)] ( 3 ) (monoclinic, space group C2/m, a = 14.5261(7), b = 6.2719(4), c = 9.6966(9)Å, β = 90.216(8)°, Z = 4) reveal complex anions with nearly D2h and C2v point symmetry. The average bond lengths in the symmetrical coordinated axes are Pt—F = 1.93 ( 2 , 3 ) and Pt—O = 1.987 ( 2 ) and in the F—Pt—O′‐axes Pt—F = 1.957 and Pt—O′ = 1.977Å ( 3 ). The oxalato ligands are nearly planar with a maximum displacement of the ring atoms of 0.05 ( 2 ) und 0.01Å ( 3 ) to the calculated best planes. In the vibrational spectra the symmetric and antisymmetric PtF stretching vibrations are observed at 583 and 586 ( 2 ) and 576 and 568 cm—1 ( 3 ). The PtF modes appear at 565 and 562 ( 1 ) and 560 cm—1 ( 3 ). The PtO and PtO′ stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 400—800 cm—1. Based on the molecular parameters of the X‐ray determinations ( 2 , 3 ) and estimated data ( 1 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtF) = 3.55 ( 2 ) and 3.38 ( 3 ), fd(PtF) = 3.23 ( 1 ) and 3.20 ( 3 ), fd(PtO) = 2.65 ( 1 ) and 2.84 ( 2 ) and fd(PtO′) = 2.97 ( 1 ) and 3.00 mdyn/Å ( 3 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 8485 ( 1 ), 8597 ( 2 ) and 10048 ppm ( 3 ), δ(19F) = —350 ( 2 ) and —352 ( 3 ) and δ(19F) = —323 ( 1 ) and —326 ppm ( 3 ) with the coupling constants 1J(PtF) = 1784 ( 2 ) and 1864 ( 3 ) and 1J(PtF) = 1525 ( 1 ) and 1638 Hz ( 3 ).  相似文献   

11.
Crystal Structures of the Azido Platinates (AsPh4)2[Pt(N3)4] and (AsPh4)2[Pt(N3)6] The crystal structures of the two homoleptic azido platinates (AsPh4)2[Pt(N3)4] ( 1 ) and (AsPh4)2[Pt(N3)6] ( 2 ) were determined by X‐ray diffraction at single crystals. In 1 the [Pt(N3)4]2– ions are without crystallographic site‐symmetry, and the platinum atoms show a planar surrounding. The [Pt(N3)6]2– ions in 2 are centrosymmetric (Ci) with an octahedral surrounding at the platinum atoms. While 1 is highly explosive, 2 is of significantly greater stability. This behaviour is explained by the packing conditions. 1 : Space group P21/n, Z = 6, lattice dimensions at –80 °C: a = 1045.3(1), b = 1620.2(1), c = 4041.0(3) pm; β = 96.70(1)°; R1 = 0.0654. 2 : Space group P1, Z = 1, lattice dimenstions at –80 °C: a = 1027.6(1), b = 1049.1(2), c = 1249.9(3) pm; α = 88.27(1)°, β = 74.13(1)°, γ = 67.90(1)°; R1 = 0.0417.  相似文献   

12.
Preparation of Tetramethylammonium Azidosulfite and Tetramethylammonium Cyanate Sulfur Dioxide‐Adduct, [(CH3)4N]+[SO2N3], [(CH3)4N]+[SO2OCN] and Crystal Structure of [(CH3)4N]+[SO2N3] Tetramethylammonium azide forms with sulfur dioxide an azidosulfite salt. It is characterized by NMR and vibrational spectroscopy and the crystal structure analysis. [(CH3)4N]+[SO2N3] crystallizes in the monoclinic space group P21/c with a = 551.3(1) pm, b = 1095.2(1) pm, c = 1465.0(1) pm, β = 100.63(1)°, and four formula units in the unit cell. The crystal structure possesses a strong S–N interaction between the N3– anions and the SO2 molecules. The S–N distance of 200.5(2) pm is longer than a covalent single S–N bond. The structure is compared with ab initio calculated data. Furthermore an adduct of tetrametylammonium cyanate and sulfur dioxide is reported. It is characterised by NMR and vibrational spectroscopy. The structure is calculated by ab initio methods.  相似文献   

13.
Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XVI [1] Reactions of [g2-{P–PtBu2}Pt(PPh3)2] and [g2-{P–PtBu2}Pt(dppe)] with Metal Carbonyls. Formation of [g2-{(CO)5M · PPtBu2}Pt(PPh3)2] (M = Cr, W) and [g2-{(CO)5Cr · PPtBu2}Pt(dppe)] [η2-{P–PtBu2}Pt(PPh3)2] 4 reacts with M(CO)5 · THF (M = Cr, W) by adding the M(CO)5 group to the phosphinophosphinidene ligand yielding [η2-{(CO)5Cr · PPtBu2}Pt(PPh3)2] 1 , or [η2-{(CO)5W · PPtBu2}Pt(PPh3)2] 2 , respectively. Similarly, [η2-{P–PtBu2}Pt(dppe)] 5 yields [η2-{(CO)5Cr · PPtBu2}Pt(dppe)] 3 . Compounds 1 , 2 and 3 are characterized by their 1H- and 31P-NMR spectra, for 2 and 3 also crystal structure determinations were performed. 2 crystallizes in the monoclinic space group P21/n (no. 14) with a = 1422.7(1) pm, b = 1509.3(1) pm, c = 2262.4(2) pm, β = 103.669(9)°. 3 crystallizes in the triclinic space group P1 (no. 2) with a = 1064.55(9) pm, b = 1149.9(1) pm, c = 1693.2(1) pm, α = 88.020(8)°, β = 72.524(7)°, γ = 85.850(8)°.  相似文献   

14.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XVIII. Syntheses and Structures of [{η2tBu2P–P=P–PtBu2}Pt(PR3)2] tBu2P–P=P(Me)tBu2 reacts with [{η2‐C2H4} · Pt(PR3)2] as well as with [{η2tBu2P–P}Pt(PR3)2] yielding [{η2tBu2P–P=P–PtBu2}Pt(PR3)2]; PR3 = PMe3 3 a , PEtPh2 3 b , 1/2 dppe 3 c , PPh3 3 d , P(p‐Tol)3 3 e . All compounds are characterized by 1H and 31P NMR spectra, for 3 b and 3 d also crystal structure determinations were performed. 3 b crystallizes in the triclinic space group P1 (No. 2) with a = 1212.58(7), b = 1430.74(8), c = 1629.34(11) pm, α = 77.321(6), β = 70.469(5), γ = 87.312(6)°. 3 d crystallizes in the triclinic space group P1 (No. 2) with a = 1122.60(9), b = 1355.88(11), c = 2025.11(14) pm, α = 83.824(9), β = 82.498(9), γ = 67.214(8)°.  相似文献   

15.
Synthesis, Crystal Structure, and Vibrational Spectra of cis ‐(CH2Py2)[ReBr4Py2]2 · (CH3)2CO By reaction of (n‐Bu4N)2[ReBr6] with pyridine and (n‐Bu4N)BH4 in dichloromethane halogeno‐pyridine‐rhenium(III)complexes are formed and purified by chromatography. X‐ray structure determination on a single crystal has been performed of cis‐(CH2Py2)[ReBr4Py2]2 · (CH3)2CO (monoclinic, space group P21/c, a = 15.0690(9), b = 8.3337(8), c = 35.588(4) Å, β = 96.409(7), Z = 4). Based on the molecular parameters of the X‐ray structure determination and assuming C2 point symmetry for the anion cis‐[ReBr4Py2] the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are in the Br–Re–Br axis fd(ReBr) = 1.49, in the asymmetrically coordinated N′–Re–Br · axes fd(ReBr · ) = 1.03 und fd(ReN′) = 2.52 mdyn/Å.  相似文献   

16.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of cis‐(n‐Bu4N)2[Pt(ECN)2(ox)2], E = S, Se By exposure of trans‐(n‐Bu4N)2[Pt(ECN)2(ox)2], E = S and Se, in dichloromethane cis‐(n‐Bu4N)2[Pt(SCN)2(ox)2] ( 1 ) and cis‐(n‐Bu4N)2[Pt(SeCN)2(ox)2] ( 2 ) are formed. The crystal structure of 1 (triclinic, space group P1¯, a = 10.789(1), b = 11.906(1), c = 18.580(1)Å, α = 85.619(10), β = 85.272(10), γ = 75.173(10)°, Z = 2) reveals, that the compound crystallizes as a racemic mixture with C2 point symmetrical complex anions. The bond lengths in both S′‐Pt‐O˙ axes are Pt‐S′ = 2.321 and Pt‐O˙ = 2.048 and in the O‐Pt‐O axis Pt‐O = 2.007Å. The oxalato ligands are nearly plane with O‐C‐C‐O torsion angles of 1.4 — 3.9°. The via S′ bound linear thiocyanate groups are coordinated with Pt‐S′‐C angles of 102.6°. In the vibrational spectra the PtE′ stretching vibrations are observed at 327 — 330 ( 1 ) and 217 — 231 cm—1 ( 2 ). The PtO˙ and PtO stretching vibrations are coupled with internal vibrations of the oxalato ligands and appear in the range of 400 — 800 cm—1. Based on the molecular parameters of the X‐ray determination ( 1 ) and estimated data ( 2 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS′) = 2.08, fd(PtSe′) = 1.78, fd(PtO˙) = 2.45 ( 1 ) and 2.27 ( 2 ) and fd(PtO) = 2.65 ( 1 ) and 2.60 mdyn/Å ( 2 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 4925.9 ( 1 ), 4783.0 ( 2 ) and δ(77Se) = 161.7 ppm with the coupling constant 1J(SePt) = 366.2 Hz.  相似文献   

17.
Preparation and Properties of Tetra(n-butyl)ammonium cis -Trifluorophthalocyaninato(2–)zirconate(IV) and -hafnate(IV); Crystal Structure of (nBu4N) cis [Hf(F)3pc2–] cis-Dichlorophthalocyaninato(2–)metal(IV) of zirconium and hafnium reacts with excess tetra(n-butyl)-ammoniumfluoride trihydrate to yield tetra(n-butyl)-ammonium cis-trifluorophthalocyaninato(2–)metalate(IV), (nBu4N)cis[M(F)3pc2–] (M = Zr, Hf). (nBu4N)cis[Hf(F)3pc2–] crystallizes in the monoclinic space group P21/n (# 14) with cell parameters a = 13.517(1) Å, b = 13.856(1) Å, c = 23.384(2) Å, α = 92.67(1)°, Z = 4. The Hf atom is in a ”︁square base-trigonal cap”︁”︁ polyhedron, coordinating three fluorine atoms and four isoindole nitrogen atoms (Niso). The Hf atom is sandwiched between the (Niso)4 and F3 planes (d(Hf–CtN) = 1.218(3) Å; d(Hf–CtF) = 1.229(3) Å; CtN/F: centre of the (Niso)4, respectively F3 plane). The average Hf–Niso and Hf–F distances are 2.298 and 1.964 Å, respectively, the average F–Hf–F angle is 84.9°. The pc2– ligand is concavely distorted. The optical spectra show the typical metal independent π-π* transitions of the pc2– ligand at c. 14700 and 29000 cm–1. In the FIR/MIR spectra vibrations of the MF3 skeleton are detected at 545, 489, 274 cm–1 (M = Zr) and 536, 484, 263 cm–1 (M = Hf), respectively.  相似文献   

18.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of ( n ‐Bu4N)2[{Ru(NO)ClI2}2(μ‐I2)] · 2 I2 By treatment of (n‐Bu4N)2[Ru(NO)I5] with (n‐Bu4N)Cl in dichloromethane (n‐Bu4N)2[{Ru(NO)ClI2}2(μ‐I2)] is formed. The X‐Ray structure determination on a single crystal of (n‐Bu4N)2[{Ru(NO)ClI2}2(μ‐I2)] · 2 I2 (monoclinic, space group I 2/a, a = 20.446(6), b = 11.482(8), c = 27.225(3) Å, β = 107.51(4)°, Z = 4) reveals a dinuclear iodine bridged structure, in which the chlorine atoms are trans positioned to the nitrosyl groups. The low temperature IR and Raman spectra have been recorded of (n‐Bu4N)2[{Ru(NO)ClI2}2(μ‐I2)] · 2 I2 and are assigned by normal coordinate analysis. A good agreement between observed and calculated frequencies is achieved. The valence force constants are fd(NO) = 14.08, fd(RuN) = 5.58, fd(RuCl) = 1.52, fd(RuIt) = 0.90 and fd(RuIb) = 0.76 mdyn/Å.  相似文献   

19.
Synthesis, Vibrational Spectra, and Crystal Structure of ( n ‐Bu4N)2[(W6Cl )F ] · 2 CH2Cl2 and 19F NMR Spectroscopic Evidence of the Mixed Cluster Anions [(W6Cl )F Cl ]2–, n = 1–6 The reaction of (n‐Bu4N)2[(W6Cl)Cl] with CF3COOH in dichloromethane gives intermediately a mixture of the cluster anions [(W6Cl)(CF3COO)Cl]2–, n = 1–6. By treatment with NH4F the outer sphere coordinated trifluoracetato ligands are easily substituted and the components of the series [(W6Cl)FCl], n = 1–6 are formed and characterized by their distinct 19F NMR chemical shifts. An X‐ray structure determination has been performed on a single crystal of (n‐Bu4N)2[(W6Cl)F] · 2 CH2Cl2 (orthorhombic, space group Pbca, a = 15.628(4), b = 17.656(3), c = 20.687(4) Å, Z = 4). The low temperatur IR (60 K) and Raman (20 K) spectra are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(WW) = 1.89, fd(WF) = 2.43 and fd(WCl) = 0.93 mdyn/Å.  相似文献   

20.
Syntheses, Vibrational Spectra, and Normal Coordinate Analysis of Halogenonitrosylruthenates [Ru(NO)ClnBr5–n]2–, n = 0–5, and the Crystal Structure of (CH2py2)[Ru(NO)ClBr4] By treatment of [Ru(NO)Cl5]2– with anhydrous HBr in dichloromethane a mixture of [Ru(NO)ClnBr5–n]2–, n = 0–5, is formed, from which individual complexes can be separated by ion exchange chromatography on diethylaminoethyl cellulose. The X-Ray structure determination on a single crystal of (CH2py2)[Ru(NO)ClBr4] (monoclinic, space group P21/c, a = 11.480(2), b = 10.175(4), c = 16.025(6) Å, β = 107.40(1)°, Z = 4) reveals, that the chlorine atom is trans positioned to the nitrosyl group. The low temperature IR and Raman spectra have been recorded of six complexes of the series (n-Bu4N)2[Ru(NO)ClnBr5–n], n = 0–5, and are assigned by normal coordinate analysis. A good agreement between observed and calculated frequencies is achieved. The valence force constants are fd(NO) = 13.86–13.93 und fd(RuN) = 5.43–5.49 mdyn/Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号