首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the title compound 1 , the macrocylic ligand DB18C6 arranges to build two types of channels in which either only water or water and H3O+ molecules are stacked to linear polymers. The counter ions, I3, also form chains and fill in the spaces left between the parallel stacks of the crown ethers. Compound 1 should therefore possess interesting conducting properties and might as well serve as model for biological water channels.  相似文献   

2.
3.
4.
Rb2Co3(H2O)2[B4P6O24(OH)2]: A Borophosphate with ‐Tetrahedral Anionic Partial Structure and Trimers of Octahedra (Co O12(H2O)2) Rb2Co3(H2O)2[B4P6O24(OH)2] is formed under mild hydrothermal conditions (T = 165 °C) from mixtures of RbOH(aq), CoCl2, H3BO3, and H3PO4 (molar ratio 1 : 1 : 1 : 2). The crystal structure (orthorhombic system) was solved by X‐ray single crystal methods (space group Pbca, No. 61; R‐values (all data): R1 = 0.0699, wR2 = 0.0878): a = 950.1(1) pm, b = 1227.2(2) pm, c = 2007.4(2) pm; Z = 4. The anionic partial structure consists of tetrahedral [B4P6O24(OH)28–] layers, which contain three‐ and nine‐membered rings. CoII is octahedrally coordinated by oxygen and oxygen and H2O ligands, respectively (coordination octahedra CoO6 and CoO4(H2O)2). Three adjacent coordination octahedra are condensed via common edges to form trimeric units (CoO12(H2O)2). The oxidation state +2 of cobalt was confirmed by magnetic measurements. The octahedral trimers are quasi‐isolated. No long‐range magnetic ordering occurs down to 2 K. Rb+ is disordered over three crystallographically independent sites within channels of the structure running parallel [010]; the coordination sphere of Rb+ is formed by nine oxygen species of the tetrahedral layers, one OH group and one H2O molecule.  相似文献   

5.
Reaction of Ndcl3 with AlCl3 and mesitylene in benzene gives complex [Nd(η6‐1, 3, 5‐C6H3Me3)‐(AlCl4)3](C6H6) (1) which was characterized by elemental analysis, IR spectra, MS and X‐ray diffractions. The X‐ray determination indicates that 1 has a distorted pentagonal bipyramidal geometry and crystallizes in the monoclinic, space group P21/n with a = 0.9586(2), b = 1.1717(5), c = 2.8966(7) nm, β = 90.85 (2)°, V = 3.2529 (6) nm3,Dc= 1.573 g/cm3, Z = 4. A comparison of bond parameters for all the reported Ln (η6‐Ar) (AlCl4)3 complexes indicates that the bond distance of La? C is shortened with the increasing of methyl group on benzene and with the decreasing of radius of lanthanide ions.  相似文献   

6.
(NH3CH2CH2NH2)3[Mo(Ⅴ)O2(O2C6H4)2] (1), (NH3CH2CH2NH2)2.5[Mo(Ⅴ)o.sW(Ⅵ)o.502(O2C6H4)2] (2) and(NH3CH2CH2NH2)2[VC(Ⅵ)O2(O2C6H4)2] (3) were synthesized, structurally characterized by X-ray diffraction analysis, and studied on their interactions with ATP, their DNA cleavage activities and antitumor properties. The redox state of molybdenum was not changed on going from crystal to aqueous solutions in complexes 1 and 2, while tungsten underwent reduction from W(VI) to W(V) in complexes 2 and 3. ATP promoted the oxidation of both molybdenum and tungsten from M(Ⅴ) to M(Ⅵ) and the hydrolysis of catecholate ligands in solution consisting of ATP and the complexes. Complex 1 possesses fairly good activity to DNA cleavage and against tumor S180 in mice, and is more effective than the control drug cyclophosphamide under the identical conditions. However, complexes 2 and 3 exhibited marginal effectiveness. The effectiveness of anti-tumor of the complexes was related positively to their DNA cleavage activities and their hydrolysis of catecholate ligands.  相似文献   

7.
The orthorhombic crystal structure of [Co2(CO)6(μ‐CO)(μ‐C4O2H2)] ( 1 ) was determined at 150 K (Fig. 1). Two C−H⋅⋅⋅O bonds connect the molecules, forming waving ribbons along the b axis. The experimental electron density, determined with the aspherical‐atom formalism, was analyzed with the topological theory of molecular structure. The presence of the Co−Co bond critical point indicates for the first time the existence of a metal−metal bond in a system with bridged ligands. The bond critical properties of the intramolecular bonds and of the intermolecular interactions show features similar to those found in [Mn2(CO)10], confirming our previously established bonding classification for organometallic and coordination compounds.  相似文献   

8.
9.
10.
Pb2(OH)2[p‐O2C‐C6H4‐CO2]: Synthesis and Crystal Structure Single crystals of Pb2(OH)2[p‐O2C‐C6H4‐CO2] ( 1 ) were obtained by hydrothermal reaction of terephthalic acid and PbCO3 at 180 °C (10 days). 1 crystallizes in the monoclinic space group P21/c with Z = 2 (a = 1115.6(2) pm, b = 380.10(4) pm, c = 1141.3(2) pm, β = 93.39(1)°, V = 0.4831(1) nm3). The crystal structure is characterized by ladder‐type Pb(OH)3/3 double chains, which are connected to a three‐dimensional framework by terephthalate dianions.  相似文献   

11.
12.
The complexes cis‐[SnCl4(H2O)2]·2H2O ( 1 ), [Sn2Cl6(OH)2(H2O)2]·4H2O ( 3 ), and [HL][SnCl5(H2O)]·2.5H2O ( 4 ) were isolated from a CH2Cl2 solution of equimolar amounts of SnCl4 and the ligand L (L=3‐acetyl‐5‐benzyl‐1‐phenyl‐4, 5‐dihydro‐1, 2, 4‐triazine‐6‐one oxime, C18H18N4O2) in the presence of moisture. 1 crystallizes in the monoclinic space group Cc with a = 2402.5(1) pm, b = 672.80(4) pm, c = 1162.93(6) pm, β = 93.787(6)° and Z = 8. 4 was found to crystallize monoclinic in the space group P21, with lattice parameters a = 967.38(5) pm, b = 1101.03(6) pm, c = 1258.11(6) pm, β = 98.826(6)° and Z = 2. The cell data for the reinvestigated structures are: [SnCl4(H2O)2]·3H2O ( 2 ): a = 1227.0(2) pm, b = 994.8(1) pm, c = 864.0(1) pm, β = 103.86(1)°, with space group C2/c and Z = 4; 3 : a = 961.54(16) pm, b = 646.29(7) pm, c = 1248.25(20) pm, β = 92.75(1)°, space group P21/c and Z = 4.  相似文献   

13.
14.
A new cyano‐bridged binuclear 4f‐3d complex Sm(DMSO)4‐(H2O)3Cr(CN)6 was synthesized and characterized by single crystal structure analysis. It crystallizes in monoclinic, space group P21 with a=0.9367(2) nm, b = 1.3917(3) nm, c = 1.1212(2) run, β = 99.88(3)° and Z = 2. In this binuclear complex, Sm atom is eight coordinated and linked to the Cr atom by a cyano bridge. The molecules packs to form 3D structure due to the hydrogen bonds among them. [K3(18‐C‐6)3(H2O)4]Cr(CN)6·3H2O (18‐C‐6 represents 18‐crown‐6‐ether) that was synthesized as a byproduct in the preparation of a Gd—Cr complex is also structurally characterized. Crystal data: triclinic, space group P‐l with a = 1.0496(7) nm, b= 1.1567(14) nm, c = 1.3530(13) nm, a = 94.15(9)°, β = 96.04(8)°, γ = 95.25(9)° and Z = l. [K3(18‐C‐6)3(H2O)4]‐Cr(CN)6·3H2O consists of ionic [K3(18‐C‐6)3(H2O)4]3+ and [Cr(CN)6]3‐ pairs, of which the [K3(18‐C‐6)3(H2O)4]3+ ion is a trinuclear duster connected by water, and K atoms are eight coordinated by eight oxygen atoms of one 18‐C‐6 and two water molecules.  相似文献   

15.
Two new iron–oxo clusters, viz. di‐μ‐tri­fluoro­acetato‐μ‐oxo‐bis­[(2,2′‐bi­pyridine‐κ2N,N′)(tri­fluoro­acetato‐κO)­iron(III)], [Fe2O(CF3CO2)4(C10H8N2)2], and bis(2,2′‐bi­pyridine)­di‐μ3‐oxo‐hexa‐μ‐tri­fluoro­acetato‐bis­(tri­fluoro­acetato)­tetrairon(III) tri­fluoro­acetic acid solvate, [Fe4O2(CF3CO2)8(C10H8N2)2]·CF3CO2H, contain dinuclear and tetranuclear FeIII cores, respectively. The FeIII atoms are in distorted octahedral environments in both compounds and are linked by oxide and tri­fluoro­acetate ions. The tri­fluoro­acetate ions are either bridging (bidentate) or coordinated to the FeIII atoms via one O atom only. The fluorinated peripheries enhance the solubility of these compounds. Formal charges for all the Fe centers were assigned by summing valences of the chemical bonds to the FeIII atom.  相似文献   

16.
The prolonged photo‐Arbuzov reaction (3 weeks, Hg lamp) of 1,3,5‐trichloro‐benzene with a large excess of trimethyl phosphite (as a solvent) at 50° gives moderate yields of dimethyl (3,5‐dichlorophenyl)phosphonate ( 1 ; 14.5%), tetramethyl (5‐chloro‐1,3‐phenylene)bis[phosphonate] ( 2 ; 35.4%), and hexamethyl (benzene‐1,3,5‐triyl)tris[phosphonate] ( 3 ; 30.1%). The products can be separated by fractional distillation. Acid hydrolysis of the esters gives almost quantitative yields of the corresponding phosphonic acids 4 – 6 . Reduction of the esters 1 – 3 by LiAlH4 in tetrahydrofuran affords the primary phosphines (3,5‐dichlorophenyl)phosphine ( 7 ; 46.5%), (5‐chloro‐1,3‐phenylene)bis[phosphine] ( 8 ; 34.5%) and (benzene‐1,3,5‐triyl)tris[phosphine] ( 9 ; 25.2% yield). In the crude reduction products from 2 (preparation of 8 ) and from 3 (preparation of 9 ), (3‐chlorophenyl)phosphine and (1,3‐phenylene)bis[phosphine], respectively, are observed as by‐products. All compounds are characterized by standard analytical, spectroscopic, and (for 1, 7 , and 8 ) structural techniques. The arrangement of the molecules in the crystal structures of 7 and 8 suggest that H‐bonding between the primary arylphosphines is virtually insignificant for the packing of the components. This is in marked contrast to the importance of H‐bonding for the supramolecular chemistry of arylamines. The new primary polyphosphines and polyphosphonic acids are to be employed in the construction of extended arrays.  相似文献   

17.
The structures of orthorhombic bis[pentaammineaquacobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Ibam), [Co(NH3)5(H2O)]2[Zr3F18]·6H2O, (I), and bis[hexaamminecobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Pnna), [Co(NH3)6]2[Zr3F18]·6H2O, (II), consist of complex [Co(NH3)x(H2O)y]3+ cations with either m [in (I)] or and 2 [in (II)] symmetry, [Zr3F18]6− anionic chains located on sites with 222 [in (I)] or 2 [in (II)] symmetry, and water molecules.  相似文献   

18.
Barium Stannate Powders from Hydrothermal Synthesis and by Thermolysis of Barium‐Tin(IV)‐Glycolates. Synthesis and Structure of [Ba(C2H6O2)4][Sn(C2H4O2)3] and [Ba(C2H6O2)2][Sn(C2H4O2)3]·CH3OH The hydrothermal reaction as well as the microwave assisted hydrothermal reaction of SnO2·aq with barium hydroxide gives Ba[Sn(OH)6] ( 1 ) as powder with bar like particles. Compound 1 of the same morphology can also be isolated from a hydrothermal reaction of [Ba(C2H6O2)4][Sn(C2H4O2)3] ( 3 ). The reaction of SnO2·aq with Ba(OH)2·8H2O in ethylene glycol yields the glycolate [Ba(C2H6O2)4][Sn(C2H4O2)3] ( 3 ), which forms in methanol the solvate [Ba(C2H6O2)2][Sn(C2H4O2)3]·CH3OH ( 4 ). Compounds 1 , 3 and 4 react at different temperatures to BaSnO3 ( 2 ) consisting of powders with different morphologies; because of the grain size of the resulting powders compounds 3 and 4 are suitable as precursor for the fabrication of corresponding ceramics.  相似文献   

19.
The mixed‐amide phosphinates, rac‐phenyl (N‐methylcyclohexylamido)(p‐tolylamido)phosphinate, C20H27N2O2P, (I), and rac‐phenyl (allylamido)(p‐tolylamido)phosphinate, C16H19N2O2P, (II), were synthesized from the racemic phosphorus–chlorine compound (R,S)‐(Cl)P(O)(OC6H5)(NHC6H4p‐CH3). Furthermore, the phosphorus–chlorine compound ClP(O)(OC6H5)(NH‐cyclo‐C6H11) was synthesized for the first time and used for the synthesis of rac‐phenyl (benzylamido)(cyclohexylamido)phosphinate, C19H25N2O2P, (III). The strategies for the synthesis of racemic mixed‐amide phosphinates are discussed. The P atom in each compound is in a distorted tetrahedral (N1)P(=O)(O)(N2) environment. In (I) and (II), the p‐tolylamido substituent makes a longer P—N bond than those involving the N‐methylcyclohexylamido and allylamido substituents. In (III), the differences between the P—N bond lengths involving the cyclohexylamido and benzylamido substituents are not significant. In all three structures, the phosphoryl O atom takes part with the N—H unit in hydrogen‐bonding interactions, viz. an N—H...O=P hydrogen bond for (I) and (N—H)(N—H)...O=P hydrogen bonds for (II) and (III), building linear arrangements along [001] for (I) and along [010] for (III), and a ladder arrangement along [100] for (II).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号