首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we consider the circular chromatic number χc(G) of series‐parallel graphs G. It is well known that series‐parallel graphs have chromatic number at most 3. Hence, their circular chromatic numbers are at most 3. If a series‐parallel graph G contains a triangle, then both the chromatic number and the circular chromatic number of G are indeed equal to 3. We shall show that if a series‐parallel graph G has girth at least 2 ⌊(3k − 1)/2⌋, then χc(G) ≤ 4k/(2k − 1). The special case k = 2 of this result implies that a triangle free series‐parallel graph G has circular chromatic number at most 8/3. Therefore, the circular chromatic number of a series‐parallel graph (and of a K4‐minor free graph) is either 3 or at most 8/3. This is in sharp contrast to recent results of Moser [5] and Zhu [14], which imply that the circular chromatic number of K5‐minor free graphs are precisely all rational numbers in the interval [2, 4]. We shall also construct examples to demonstrate the sharpness of the bound given in this article. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 14–24, 2000  相似文献   

2.
Let S(r) denote a circle of circumference r. The circular consecutive choosability chcc(G) of a graph G is the least real number t such that for any r≥χc(G), if each vertex v is assigned a closed interval L(v) of length t on S(r), then there is a circular r‐coloring f of G such that f(v)∈L(v). We investigate, for a graph, the relations between its circular consecutive choosability and choosability. It is proved that for any positive integer k, if a graph G is k‐choosable, then chcc(G)?k + 1 ? 1/k; moreover, the bound is sharp for k≥3. For k = 2, it is proved that if G is 2‐choosable then chcc(G)?2, while the equality holds if and only if G contains a cycle. In addition, we prove that there exist circular consecutive 2‐choosable graphs which are not 2‐choosable. In particular, it is shown that chcc(G) = 2 holds for all cycles and for K2, n with n≥2. On the other hand, we prove that chcc(G)>2 holds for many generalized theta graphs. © 2011 Wiley Periodicals, Inc. J Graph Theory 67: 178‐197, 2011  相似文献   

3.
Let G be a planar graph. The vertex face total chromatic number χ13(G) of G is the least number of colors assigned to V(G)∪F(G) such that no adjacent or incident elements receive the same color. The main results of this paper are as follows: (1) We give the vertex face total chromatic number for all outerplanar graphs and modulus 3-regular maximal planar graphs. (2) We prove that if G is a maximal planar graph or a lower degree planar graph, i.e., ∠(G) ≤ 3, then χ13(G) ≤ 6. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Let G(n,c/n) and Gr(n) be an n‐node sparse random graph and a sparse random r‐regular graph, respectively, and let I(n,r) and I(n,c) be the sizes of the largest independent set in G(n,c/n) and Gr(n). The asymptotic value of I(n,c)/n as n → ∞, can be computed using the Karp‐Sipser algorithm when ce. For random cubic graphs, r = 3, it is only known that .432 ≤ lim infn I(n,3)/n ≤ lim supn I(n,3)/n ≤ .4591 with high probability (w.h.p.) as n → ∞, as shown in Frieze and Suen [Random Structures Algorithms 5 (1994), 649–664] and Bollabas [European J Combin 1 (1980), 311–316], respectively. In this paper we assume in addition that the nodes of the graph are equipped with nonnegative weights, independently generated according to some common distribution, and we consider instead the maximum weight of an independent set. Surprisingly, we discover that for certain weight distributions, the limit limn I(n,c)/n can be computed exactly even when c > e, and limn I(n,r)/n can be computed exactly for some r ≥ 1. For example, when the weights are exponentially distributed with parameter 1, limn I(n,2e)/n ≈ .5517, and limn I(n,3)/n ≈ .6077. Our results are established using the recently developed local weak convergence method further reduced to a certain local optimality property exhibited by the models we consider. We extend our results to maximum weight matchings in G(n,c/n) and Gr(n). For the case of exponential distributions, we compute the corresponding limits for every c > 0 and every r ≥ 2. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

5.
The circular flow number Φc(G,σ) of a signed graph (G,σ) is the minimum r for which an orientation of (G,σ) admits a circular r-flow. We prove that the circular flow number of a signed graph (G,σ) is equal to the minimum imbalance ratio of an orientation of (G,σ). We then use this result to prove that if G is 4-edge-connected and (G,σ) has a nowhere zero flow, then Φc(G,σ) (as well as Φ(G,σ)) is at most 4. If G is 6-edge-connected and (G,σ) has a nowhere zero flow, then Φc(G,σ) is strictly less than 4.  相似文献   

6.
We consider random walks on several classes of graphs and explore the likely structure of the vacant set, i.e. the set of unvisited vertices. Let Γ(t) be the subgraph induced by the vacant set of the walk at step t. We show that for random graphs Gn,p (above the connectivity threshold) and for random regular graphs Gr,r ≥ 3, the graph Γ(t) undergoes a phase transition in the sense of the well‐known ErdJW‐RSAT1100590x.png ‐Renyi phase transition. Thus for t ≤ (1 ‐ ε)t*, there is a unique giant component, plus components of size O(log n), and for t ≥ (1 + ε)t* all components are of size O(log n). For Gn,p and Gr we give the value of t*, and the size of Γ(t). For Gr, we also give the degree sequence of Γ(t), the size of the giant component (if any) of Γ(t) and the number of tree components of Γ(t) of a given size k = O(log n). We also show that for random digraphs Dn,p above the strong connectivity threshold, there is a similar directed phase transition. Thus for t ≤ (1 ‐ ε)t*, there is a unique strongly connected giant component, plus strongly connected components of size O(log n), and for t ≥ (1 + ε)t* all strongly connected components are of size O(log n). © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

7.
For 1 ≤ dk, let Kk/d be the graph with vertices 0, 1, …, k ? 1, in which ij if d ≤ |i ? j| ≤ k ? d. The circular chromatic number χc(G) of a graph G is the minimum of those k/d for which G admits a homomorphism to Kk/d. The circular clique number ωc(G) of G is the maximum of those k/d for which Kk/d admits a homomorphism to G. A graph G is circular perfect if for every induced subgraph H of G, we have χc(H) = ωc(H). In this paper, we prove that if G is circular perfect then for every vertex x of G, NG[x] is a perfect graph. Conversely, we prove that if for every vertex x of G, NG[x] is a perfect graph and G ? N[x] is a bipartite graph with no induced P5 (the path with five vertices), then G is a circular perfect graph. In a companion paper, we apply the main result of this paper to prove an analog of Haj?os theorem for circular chromatic number for k/d ≥ 3. Namely, we shall design a few graph operations and prove that for any k/d ≥ 3, starting from the graph Kk/d, one can construct all graphs of circular chromatic number at least k/d by repeatedly applying these graph operations. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 186–209, 2005  相似文献   

8.
A proper coloring of the edges of a graph G is called acyclic if there is no 2‐colored cycle in G. The acyclic edge chromatic number of G, denoted by a′(G), is the least number of colors in an acyclic edge coloring of G. For certain graphs G, a′(G) ≥ Δ(G) + 2 where Δ(G) is the maximum degree in G. It is known that a′(G) ≤ 16 Δ(G) for any graph G. We prove that there exists a constant c such that a′(G) ≤ Δ(G) + 2 for any graph G whose girth is at least cΔ(G) log Δ(G), and conjecture that this upper bound for a′(G) holds for all graphs G. We also show that a′(G) ≤ Δ + 2 for almost all Δ‐regular graphs. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 157–167, 2001  相似文献   

9.
A graph G is a quasi‐line graph if for every vertex vV(G), the set of neighbors of v in G can be expressed as the union of two cliques. The class of quasi‐line graphs is a proper superset of the class of line graphs. Hadwiger's conjecture states that if a graph G is not t‐colorable then it contains Kt + 1 as a minor. This conjecture has been proved for line graphs by Reed and Seymour. We extend their result to all quasi‐line graphs. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 17–33, 2008  相似文献   

10.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. It is known [J Graph Theory 35 (2000), 21–45] that if G is a connected graph of order n > 10 with minimum degree at least 2, then γt(G) ≤ 4n/7 and the (infinite family of) graphs of large order that achieve equality in this bound are characterized. In this article, we improve this upper bound of 4n/7 for 2‐connected graphs, as well as for connected graphs with no induced 6‐cycle. We prove that if G is a 2‐connected graph of order n > 18, then γt(G) ≤ 6n/11. Our proof is an interplay between graph theory and transversals in hypergraphs. We also prove that if G is a connected graph of order n > 18 with minimum degree at least 2 and no induced 6‐cycle, then γt(G) ≤ 6n/11. Both bounds are shown to be sharp. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 55–79, 2009  相似文献   

11.
This paper discusses the circular version of list coloring of graphs. We give two definitions of the circular list chromatic number (or circular choosability) χc, l(G) of a graph G and prove that they are equivalent. Then we prove that for any graph G, χc, l(G) ≥ χl(G) ? 1. Examples are given to show that this bound is sharp in the sense that for any ? 0, there is a graph G with χc, l(G) > χl(G) ? 1 + ?. It is also proved that k‐degenerate graphs G have χc, l(G) ≤ 2k. This bound is also sharp: for each ? < 0, there is a k‐degenerate graph G with χc, l(G) ≥ 2k ? ?. This shows that χc, l(G) could be arbitrarily larger than χl(G). Finally we prove that if G has maximum degree k, then χc, l(G) ≤ k + 1. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 210–218, 2005  相似文献   

12.
A balloon in a graph G is a maximal 2‐edge‐connected subgraph incident to exactly one cut‐edge of G. Let b(G) be the number of balloons, let c(G) be the number of cut‐edges, and let α′(G) be the maximum size of a matching. Let ${\mathcal{F}}_{{{n}},{{r}}}A balloon in a graph G is a maximal 2‐edge‐connected subgraph incident to exactly one cut‐edge of G. Let b(G) be the number of balloons, let c(G) be the number of cut‐edges, and let α′(G) be the maximum size of a matching. Let ${\mathcal{F}}_{{{n}},{{r}}}$ be the family of connected (2r+1)‐regular graphs with n vertices, and let ${{b}}={{max}}\{{{b}}({{G}}): {{G}}\in {\mathcal{F}}_{{{n}},{{r}}}\}$. For ${{G}}\in{\mathcal{F}}_{{{n}},{{r}}}$, we prove the sharp inequalities c(G)?[r(n?2)?2]/(2r2+2r?1)?1 and α′(G)?n/2?rb/(2r+1). Using b?[(2r?1)n+2]/(4r2+4r?2), we obtain a simple proof of the bound proved by Henning and Yeo. For each of these bounds and each r, the approach using balloons allows us to determine the infinite family where equality holds. For the total domination number γt(G) of a cubic graph, we prove γt(G)?n/2?b(G)/2 (except that γt(G) may be n/2?1 when b(G)=3 and the balloons cover all but one vertex). With α′(G)?n/2?b(G)/3 for cubic graphs, this improves the known inequality γt(G)?α′(G). © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 116–131, 2010  相似文献   

13.
A graph G is co-connected if both G and its complement ? are connected and nontrivial. For two graphs A and B, the connected Ramsey number rc(A, B) is the smallest integer n such that there exists a co-connected graph of order n, and if G is a co-connected graph on at least n vertices, then A ? G or B ? ?. If neither A or B contains a bridge, then it is known that rc(A, B) = r(A, B), where r(A, B) denotes the usual Ramsey number of A and B. In this paper rc(A, B) is calculated for some pairs (A, B) when r(A, B) is known and at least one of the graphs A or B has a bridge. In particular, rc(A, B) is calculated for A a path and B either a cycle, star, or complete graph, and for A a star and B a complete graph.  相似文献   

14.
The toughness indexτ(G) of a graph G is defined to be the largest integer t such that for any S ? V(G) with |S| > t, c(G - S) < |S| - t, where c(G - S) denotes the number of components of G - S. In particular, 1-tough graphs are exactly those graphs for which τ(G) ≥ 0. In this paper, it is shown that if G is a planar graph, then τ(G) ≥ 2 if and only if G is 4-connected. This result suggests that there may be a polynomial-time algorithm for determining whether a planar graph is 1-tough, even though the problem for general graphs is NP-hard. The result can be restated as follows: a planar graph is 4-connected if and only if it remains 1-tough whenever two vertices are removed. Hence it establishes a weakened version of a conjecture, due to M. D. Plummer, that removing 2 vertices from a 4-connected planar graph yields a Hamiltonian graph.  相似文献   

15.
A total dominating set, S, in a graph, G, has the property that every vertex in G is adjacent to a vertex in S. The total dominating number, γt(G) of a graph G is the size of a minimum total dominating set in G. Let G be a graph with no component of size one or two and with Δ(G) ≥ 3. In 6 , it was shown that |E(G)| ≤ Δ(G) (|V(G)|–γt(G)) and conjectured that |E(G)| ≤ (Δ(G)+3) (|V(G)|–γt(G))/2 holds. In this article, we prove that holds and that the above conjecture is false as there for every Δ exist Δ‐regular bipartite graphs G with |E(G)| ≥ (Δ+0.1 ln(Δ)) (|V(G)|–γt(G))/2. The last result also disproves a conjecture on domination numbers from 8 . © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 325–337, 2007  相似文献   

16.
The H-free process, for some fixed graph H, is the random graph process defined by starting with an empty graph on n vertices and then adding edges one at a time, chosen uniformly at random subject to the constraint that no H subgraph is formed. Let G be the random maximal H-free graph obtained at the end of the process. When H is strictly 2-balanced, we show that for some c>0, with high probability as n→∞, the minimum degree in G is at least cn1-(vH-2)/(eH-1)(logn)1/(eH-1)cn^{1-(v_{H}-2)/(e_{H}-1)}(\log n)^{1/(e_{H}-1)}. This gives new lower bounds for the Turán numbers of certain bipartite graphs, such as the complete bipartite graphs K r,r with r≥5. When H is a complete graph K s with s≥5 we show that for some C>0, with high probability the independence number of G is at most Cn2/(s+1)(logn)1-1/(eH-1)Cn^{2/(s+1)}(\log n)^{1-1/(e_{H}-1)}. This gives new lower bounds for Ramsey numbers R(s,t) for fixed s≥5 and t large. We also obtain new bounds for the independence number of G for other graphs H, including the case when H is a cycle. Our proofs use the differential equations method for random graph processes to analyse the evolution of the process, and give further information about the structure of the graphs obtained, including asymptotic formulae for a broad class of subgraph extension variables.  相似文献   

17.
In the set of graphs of order n and chromatic number k the following partial order relation is defined. One says that a graph G is less than a graph H if ci(G) ≤ ci(H) holds for every i, kin and at least one inequality is strict, where ci(G) denotes the number of i‐color partitions of G. In this paper the first ? n/2 ? levels of the diagram of the partially ordered set of connected 3‐chromatic graphs of order n are described. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 210–222, 2003  相似文献   

18.
The square G2 of a graph G is the graph with the same vertex set G and with two vertices adjacent if their distance in G is at most 2. Thomassen showed that every planar graph G with maximum degree Δ(G) = 3 satisfies χ(G2) ≤ 7. Kostochka and Woodall conjectured that for every graph, the list‐chromatic number of G2 equals the chromatic number of G2, that is, χl(G2) = χ(G2) for all G. If true, this conjecture (together with Thomassen's result) implies that every planar graph G with Δ(G) = 3 satisfies χl(G2) ≤ 7. We prove that every connected graph (not necessarily planar) with Δ(G) = 3 other than the Petersen graph satisfies χl(G2) ≤8 (and this is best possible). In addition, we show that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 7, then χl(G2) ≤ 7. Dvo?ák, ?krekovski, and Tancer showed that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 10, then χl(G2) ≤6. We improve the girth bound to show that if G is a planar graph with Δ(G) = 3 and g(G) ≥ 9, then χl(G2) ≤ 6. All of our proofs can be easily translated into linear‐time coloring algorithms. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 65–87, 2008  相似文献   

19.
The tree partition number of an r‐edge‐colored graph G, denoted by tr(G), is the minimum number k such that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most k vertex‐disjoint monochromatic trees. We determine t2(K(n1, n2,…, nk)) of the complete k‐partite graph K(n1, n2,…, nk). In particular, we prove that t2(K(n, m)) = ? (m‐2)/2n? + 2, where 1 ≤ nm. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 133–141, 2005  相似文献   

20.
The nth crossing number of a graph G, denoted ncr(G), is the minimum number of crossings in a drawing of G on an orientable surface of genus n. We prove that for every a>b>0, there exists a graph G for which 0cr(G)=a, 1cr(G)=b, and 2cr(G)=0. This provides support for a conjecture of Archdeacon et al. and resolves a problem of Salazar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号