首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determination of Temperature Dependent Partial Pressures in Closed Systems – a New Method. The Heat of Formation for PtI2(s) A new method to determine temperature dependent partial pressures of gaseous species in equilibria with condensed phases in closed systems (silica ampoules) at temperatures up to 1000 °C and pressures pi 0.01 < pi < 10 bar is presented. It is based on the determination of the change of mass in the gasphase caused by solid-gas transition at higher temperatures of substances which are deposited at one end of the ampoule. The results of the measurements give informations about reaction mechanisms, enthalpies and entropies. The reliability of the method is demonstrated at the example of the system Pt/I2. The heat of formation and the entropy of PtI2(s) (δBH°(PtI2(s), 298) = –51.4 kJ · mol–1, S°(PtI2(s), 298) = 119.3 J · K–1 · mol–1) are computed from experimental results. The heat of thermal decomposition of PtI2(s) was reconsidered by Knudsen Mass Spectrometry.  相似文献   

2.
Aus‐Thermochemical Investigations on Systems M2O3/SeO2 — Determination of Specific Heat Capacities The experimental determination of the molar heat capacities of the ternary compounds M2SexO3+2x (M = Bi, Y, Nd, Sm) and the comparison with theoretical derivatives are described. It is shown, how the functions of the binary parent compounds M2O3 and SeO2 are verified. For the determination of the Cp‐function of SeO2 at higher temperatures an indirect method is developed.  相似文献   

3.
Zusammenfassung Der Aufschluß von Nahrungsmitteln tierischen Ursprungs mit Salpetersäure-Schwefelsäure in einer Polyäthylenflasche bei 60° C und mit Salpetersäure in einem Bombengefäß bei 150° C wurde untersucht. Beide Verfahren liefern befriedigende Ergebnisse. Im zweiten Fall besteht wegen kleinerer Reagensmengen jedoch eine geringere Gefahr des Einschleppens von Blindwerten. Blei, Cadmium und Quecksilber können aus der Aufschlußlösung durch Adsorption an dem Austauscherharz Chelex 100 oder durch Fällung mit Ammonium-pyrrolidindithiocarbamat unter Zusatz von Kupfer als Träger abgetrennt werden. Arsen und Tellur lassen sich anschließend zusammen mit Kupferträger durch Schwefelwasserstoff ausfällen. Die Ausbeuten für Aufschluß und Abtrennung liegen bei 90% oder darüber. — Die quantitative Bestimmung wurde mit Hilfe der energiedispersiven Röntgenfluorescenzanalyse durchgeführt, wobei 109Cd bzw. 241Am oder eine Röntgenröhre mit Zirkon oder Molybdän als Sekundärstrahler zur Anregung verwendet wurden. Beim Blei und Quecksilber konnten noch 1 g, beim Arsen und Tellur noch 0,5 g quantitativ bestimmt werden.
Investigation of a method for the determination of lead, cadmium, mercury, arsenic and tellurium in food by means of X-ray fluorescence analysis
The decomposition of food of animal origin with a mixture of nitric acid and sulphuric acid in a polyethylene flask at 60° C and with nitric acid in a steel vessel at 150° C was investigated. Both procedures give satisfactory results. The advantage of the second procedure lies in the small amounts of reagents needed, thus keeping blank values low. Lead, cadmium and mercury can be separated from the decomposition solution by the chelating resin Chelex 100 or by precipitation with ammonium pyrrolidine dithiocarbamate, using copper as carrier. Arsenic and tellurium may be precipitated in the filtrate by hydrogen sulphide, using copper as carrier. The overall yields are about 90% or more. — The quantitative determination was performed by means of the energy dispersive X-ray fluorescence analysis, using 109Cd or 241Am sources or an X-ray tube with zirconium or molybdenum as secondary target for the excitation. 1 g of lead and mercury and 0.5 g of arsenic and tellurium could still be determined.
  相似文献   

4.
Ohne Zusammenfassung
Application of detergents to the direct determination of Fe, Zn and Cu in milk by means of flame atomic-absorption spectrophotometry
  相似文献   

5.
6.
7.
Polynuclear Complexes with Fe? As, Fe? Sb, and Fe? Bi Frameworks The anionic iron clusters Fe3(CO)112? and Fe4(CO)132? were reacted with compounds EX3 and with organic derivatives REX2 and R2EX of the elements arsenic, antimony, and bismuth. Commonly redox and cluster degradation reactions were observed. The new complexes [(CO)4Fe? AsMe2? Fe(CO)4]?, [HFe3(CO)9(mu;3-SbBut)]?, [Fe3(CO)10 (mu;3-Sb)]?, and [Fe3(CO)10(mu;3-Bi)]? were formed and isolated as their PPN salts. The Fe? As? Fe complex was identified by a structure determination, the other complexes were identified by their spectra.  相似文献   

8.
9.
10.
Summary An already described HPLC method for the determination of retinol and -tocopherol has been improved by development of the simple column serving simultaneously for the extraction, drying and purification of these compounds. This column contains alumina, extrelut and sodium sulphate. After saponification of the sample the solution is neutralized and applied to the column. Hexane is employed for extracting the vitamins. Preparation of the column and of a suitable rack are described in detail.  相似文献   

11.
A Comparison of the Crystal Structures of the Tetraammoniates of Lithium Halides, LiBr·4NH3 and LiI·4NH3, with the Structure of Tetramethylammonium Iodide, N(CH3)4I Crystals of the tetraammoniates of LiBr and LiI sufficient in size for X‐ray structure determinations were obtained by slow evaporation of NH3 at room temperature from a clear solution of the halides in liquid ammonia. The compounds crystallize in the space group Pnma (No. 62) with four formula units in the unit cell: LiBr·4NH3: a = 11.947(5)Å, b = 7.047(4)Å, c = 9.472(3)Å LiI·4NH3: a = 12.646(3)Å, b = 7.302 (1)Å, c = 9.790(2)Å For N(CH3)4I the structure was now successfully solved including the hydrogen positions of the methyl groups. N(CH3)4I: P4/nmm (No. 129), Z = 2, a = 7.948(1)Å, c = 5.738(1)Å The ammoniates of LiBr and LiI crystallize isotypic in a strongly distorted arrangement of the CsCl motif. Even N(CH3)4I has an CsCl‐like structure. Both structure types differ mainly in their orientation of the [Li(NH3)4]+ — resp. [N(CH3)4]+ — cations with respect to the surrounding “cube” of anions.  相似文献   

12.
13.
S. Koch  G. Ackermann  V. Scholze 《Talanta》1981,28(12):915-918
As part of a study to evaluate the use of ternary complexes in photometric methods of analysis, three model systems involving titanium(IV) and tiron plus iminodiacetic acid, nitrilotriacetic acid or diethylenetriaminepenta-acetic acid have been investigated. The methods were compared in terms of working range, molar absorptivity, standard deviation, coefficient of variation, slope of calibration line, limit of detection and limit of determination. The extent of interference from 20 other ions was also examined. The nitrilotriacetic acid system was shown to have better selectivity than the other two.  相似文献   

14.
15.
16.
Dinuclear Silylene Bridged Cyclopentadienylrhodiumbis(ethene) Complexes, Photochemical Reaction with Benzene Derivatives, and Selective Inclusion of Methylcyclopentane into the Crystal Lattice of [Me2Si{3-But-C5H3Rh(C2H4)2}2] By reaction of [{(C2H4)2RhCl}2] with Na2[Me2Si(C5H4)2] or with Li2[Me2Si(3-But-C5H3)2] in THF the dinuclear silylene bridged complexes [Me2Si{C5H4Rh(C2H4)2}2] 1 and [Me2Si{3-But-C5H3Rh(C2H4)2}2] 2 , respectively, were synthesized. Due to the asymmetric substitution of the five-membered rings and their hindered rotation around the Si? C axes, 2 is formed as three isomers. The X-ray structure analysis of 2 obtained from hexane reveals the selective inclusion of methylcyclopentane, the content of which in the solvent is about 17%, into the crystal lattice. UV irradiation of 1 in hexane in the presence of benzene causes elimination of the ethene ligands yielding the μ-η33 benzene complex [Me2Si(C5H4Rh2)2C6H6] which cannot be separated from unreacted 1 . However, separation is possible in case of the hexamethylbenzene compound 4 analogous with 3 .  相似文献   

17.
Reactivity in the Systems A/Cu/M/O (A = Na–Cs and M = Co, Ni, Cu, Ag); Synthesis and Crystal Structures of K3Cu5O4 und Cs3Cu5O4 The systems A/Cu/M/O with A = Na–Cs and M = Co, Ni, Cu, Ag have been investigated with preparative, thermoanalytical and in situ X‐ray techniques to study the reactivity. For the redox reaction Co/CuO in the presence of Na2O the intermediate, NaCuO, has been characterized. K3Cu5O4 was obtained by annealing intimate mixtures of K2O and CuO (molar ratio 1 : 1) in Ag containers at 500 °C. Cs3Cu5O4 could be synthezised by reaction of KCuO2 with Cs2O (molar ratio 1 : 1) in Cu containers at 500 °C. Both compounds crystallize in the space group P21/c with Z = 4 isotypic to Rb3Cu5O4 [IPDS data, Mo–Kα; K3Cu5O4: a = 946.0(1), b = 735.61(6), c = 1401.3(2) pm, β = 107.21(1)°; 2249 F2(hkl), R1 = 7.09%, wR2 = 11.42%; Cs3Cu5O4: a = 1027.7(1), b = 761.42(7), c = 1473.4(2) pm, β = 106.46(1)°, 1712 F2(hkl), R1 = 6.04%, wR2 = 14.22%]. Force constants obtained from FIR experiments for the deformation mode δ(O–Cu–O), the Madelung Part of the Lattice Energie, MAPLE, Effective Coordination Numbers, ECoN, calculated via Mean Effective Ionenradii, MEFIR, are given.  相似文献   

18.
V2O3(OH)4(g), Proof of Existence, Thermochemical Characterization, and Chemical Vapor Transport Calculations for V2O5(s) in the Presence of Water By use of the Knudsen-cell mass spectrometry the existence of V2O3(OH)4(g) is shown. For the molecules V2O3(OH)4(g), V4O10(g), and V4O8(g) thermodynamic properties were calculated by known Literatur data. The influence of V2O3(OH)4(g) for chemical vapor transport reactions of V2O5(s) with water ist discussed. ΔBH°(V2O3(OH)4(g), 298) = –1920 kJ · mol–1 and S°(V2O3(OH)4(g), 298) = 557 J · K–1 · mol–1, ΔBH°(V4O10(g), 298) = –2865,6 kJ · mol–1 and S°(V4O10(g), 298) = 323.7 J · K–1 · mol–1, ΔBH°(V4O8(g), 298) = –2465 kJ · mol–1 and S°(V4O8(g), 298) = 360 J · K–1 · mol–1.  相似文献   

19.
New Complexes of the Lanthanoides with Bidentate Ligands. The Crystal Structures of [(C17H17N2)GdBr2(thf)2] and [(C17H17N2)3Ln] (L = Sm, Gd) Reaction of [(AIP)Li] with GdBr3 leads to a new mononuclear complex [(AIP)GdBr2(thf)2] 1 . In contrast to this with SmI2 the compound [(AIP)3Sm] 2 is build up. Such complexes are also formed with Gd(OR*)3 (R* = OtBu2C6H3) and [(AIP)Li] in a 1:3 ratio, [(AIP)3Gd] 3 . The structures of 1–3 were characterized by X-ray single crystal structure analysis ( 1 : space group Pna21 (No. 33), Z = 4, a = 1 972.7(9) pm, b = 984.7(5) pm, c = 1 425.0(8) pm, α = β = γ = 90°; 2 · 2 THF: space group C2/c (No. 15), Z = 8, a = 3 644.4(9) pm, b = 1 437.5(5) pm, c = 2 334.4(7) pm, β = 1 21.07(6)°; 3 : space group P2(1)/c (No. 14), Z = 4, a = 1 872.9(1) pm, b = 1 064.6(1) pm, c = 2 282.4(2) pm, β = 103.75(8)°).  相似文献   

20.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. XI. Formation, Reactions, and Structures of Chromium Carbonyl Complexes from Reactions of Li(THF)22-(tBu2P)2P] with Cr(CO)5 · THF and Cr(CO)4 · NBD Reactions of Li(THF)22-(tBu2P)2P] 1 with Cr(CO)5 · THF yield Li(THF)2Et2O[Cr(CO)42-(tBu2P)2P}η1-Cr(CO)5] 2 and the compounds [Cr(CO)42-(tBu2P)2PH}] 3 , [Cr(CO)51-(tBu2P)2PH}] 4 , (tBu2P)2PH 5 and tBu2PH · Cr(CO)5 6 . The formation of 3, 4, 5 and 6 is due to byproducts coming from the synthesis of 1. 2 reacts with CH3COOH under formation of 3 . After addition of 12-crown-4 1 with NBD · Cr(CO)4 in THF forms Li(12-crown-4)2[Cr(CO)4-{η2-(tBu2P)2P}] 7 (yellow crystals). 7 reacts with CH3COOH to 3 – which regenerates 7 with LiBu – with Cr(CO)5THF to compound 2 , with NBD · Cr(CO)4 in THF to 2 and 3 (ratio 1 : 1). With EtBr, 7 forms [Cr(CO)42-(tBu2P)2PEt}] 8 , and [Cr(CO)42-(tBu2P)2PBr}] 9 with BrCH2? CH2Br. The compounds were characterized by means of 1H, 13C, 31P, 7Li NMR spectroscopy, IR spectroscopy, elementary analysis, mass spectra, and 2, 3 and 4 additionally by means of X-ray diffraction analysis. 2 crystallizes in the space group P1 with 2 formula units in the elementary cell; a = 10.137(9), b = 15.295(12), c = 15.897(14) Å; α = 101.82(7), β = 91.65(7), γ = 98.99(7)°; 3 crystallizes in the space group P2t/n with 4 molecules in the elementary unit; a = 11.914(6), b = 15.217(10), c = 14.534(10) Å; α = 90, β = 103.56(5), γ = 90°. 4 : space group P1 with 2 molecules in the elementary unit; a = 8.844(4), b = 12.291(6), c = 14.411(7) Å, α = 66.55(2), β = 89.27(2), γ = 71.44(2)°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号