首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a derivation of an explicit algebraic model for two-dimensional (2-D) buoyant flows. It is an extension of the work reported in Part I (So et al. [27]). The tensor representation method of Jongen and Gatski [14] is extended to derive an explicit algebraic Reynolds stress model (EASM) for 2-D buoyant flow invoking the Boussinesq approximation. The projection methodology is further extended to treat the heat flux transport equation in the derivation of an explicit algebraic heat flux model (EAHFM) for buoyant flow. Again, the weak equilibrium assumption is invoked for the scaled Reynolds stress and scaled heat flux equation. An explicit algebraic model for buoyant flows is then formed with the EASM and EAHFM. From the derived EAHFM, an expression for the thermal diffusivity tensor in buoyant shear flows is deduced. Furthermore, a turbulent Prandtl number (PrT) for each of the three heat flux directions is determined. These directional PrT are found to be a function of the gradient Richardson number. Alternatively, a scalar PrT can be derived; its value is compared with the directional PrT. The EASM and EAHFM are used to calculate 2-D homogeneous buoyant shear flows and the results are compared with direct numerical simulation data and other model predictions, where good agreement is obtained. Dedicated to the memory of the late Professor Charles G. Speziale of Boston University  相似文献   

2.
A class of recently developed explicit algebraic stress models based on tensorially quadratic stress--strain relations [7] is subjected to a systematical realizability analysis. It is found that these models, which are of particular interest for their rigorous derivation from linear second-moment closure models, tend to produce inappropriate unrealizable results like negative turbulence energy components, even in simple shear flows. The cause of the defect is identified in conjunction with a set of realizability-furnishing constraints on the model coefficients. With the exception of the silent normal stress component in accelerated flow, the nature and rationale of the explicit algebraic stress model suggested by Gatski and Speziale [7] can be extended to maintain the realizability principle. Results obtained from the corresponding quasi-realizable quadratic eddy-viscosity model are reported in comparison with other nonlinear modelling practices.  相似文献   

3.
A simplified consistency formulation for Pk/ε (production to dissipation ratio) is devised to obtain a non-singular Cμ (coefficient of eddy-viscosity) in the explicit algebraic Reynolds stress model of Gatski and Speziale. The coefficient Cμ depends non-linearly on both rotational/irrotational strains and is used in the framework of an improved RAS (Rahman–Agarwal–Siikonen) one-equation turbulence model to calculate a few well-documented turbulent flows, yielding predictions in good agreement with the direct numerical simulation and experimental data. The strain-dependent Cμ assists the RAS model in constructing the coefficients and functions such as to benefit complex flows with non-equilibrium turbulence. Comparisons with the Spalart–Allmaras one-equation model and the shear stress transport k-ω model demonstrate that Cμ improves the response of RAS model to non-equilibrium effects.  相似文献   

4.
Most explicit algebraic stress models are formulated for turbulent shear flows without accounting for external body force effects, such as the buoyant force. These models yield fairly good predictions of the turbulence field generated by mean shear. As for thermal turbulence generated by the buoyant force, the models fail to give satisfactory results. The reason is that the models do not explicitly account for buoyancy effects, which interact with the mean shear to enhance or suppress turbulent mixing. Since applicable, coupled differential equations have been developed describing these thermal turbulent fields, it is possible to develop corresponding explicit algebraic stress models using tensor representation theory. While the procedure to be followed has been employed previously, unique challenges arise in extending the procedure for developing the algebraic representations to turbulent buoyant flows. In this paper the development of an explicit algebraic stress model (EASM) is confined to the homogeneous buoyant shear flow case to illustrate the methodology needed to develop the proper polynomial representations. The derivation is based on the implicit formulation of the Reynolds stress anisotropy at buoyant equilibrium. A five-term representation is found to be necessary to account properly for the effect of the thermal field. Thus derived, external buoyancy effects are represented in the scalar coefficients of the basis tensors, and structural buoyancy effects are accounted for in additional terms in the stress anisotropy tensor. These terms will not vanish even in the absence of mean shear. The performance of the new EASM, together with a two-equation (2-Eq) model, the non-buoyant EASM of Gatski and Speziale (1993) and a full second-order model, is assessed against direct numerical simulations of homogeneous, buoyant shear flows at two different Richardson numbers representing weak and strong buoyancy effects. The calculations show that this five-term representation yields better results than the 2-Eq model and the EASM of Gatski and Speziale where buoyancy effects are not explicitly accounted for. Received 5 March 2001 and accepted 15 January 2002  相似文献   

5.
Tensor representation theory is used to derive an explicit algebraic model that consists of an explicit algebraic stress model (EASM) and an explicit algebraic heat flux model (EAHFM) for two-dimensional (2-D) incompressible non-isothermal turbulent flows. The representation methodology used for the heat flux vector is adapted from that used for the polynomial representation of the Reynolds stress anisotropy tensor. Since the methodology is based on the formation of invariants from either vector or tensor basis sets, it is possible to derive explicit polynomial vector expansions for the heat flux vector. The resulting EAHFM is necessarily coupled with the turbulent velocity field through an EASM for the Reynolds stress anisotropy. An EASM has previously been derived by Jongen and Gatski [10]. Therefore, it is used in conjunction with the derived EAHFM to form the explicit algebraic model for incompressible 2-D flows. This explicit algebraic model is analyzed and compared with previous formulations including its ability to approximate the commonly accepted value for the turbulent Prandtl number. The effect of pressure-scrambling vector model calibration on predictive performance is also assessed. Finally, the explicit algebraic model is validated against a 2-D homogeneous shear flow with a variety of thermal gradients. Dedicated to the memory of the late Professor Charles G. Speziale of Boston University  相似文献   

6.
Unsteady Reynolds averaged Navier–Stokes (URANS) and detached eddy simulation (DES) related approaches are considered for high angle of attack NACA0012 airfoil, wing–flap, generic tilt‐rotor airfoil and double‐delta geometry flows. These are all found to be problem flows for URANS models. For DES fifth‐order upwinding is found too dissipative and the use of, for high speed flows, instability prone centred differencing essential. An existing hybrid ILES–RANS modelling approach, intended for flexible geometry, relatively high numerical dissipation codes is tested along with differential wall distance algorithms. The former gives promising results. The standard turbulence modelling approaches are found to give perhaps a surprising results variation. Results suggest that for the problem flows, the explicit algebraic stress and Menter shear stress transport (SST) URANS models are more accurate than the economical Spalart–Allmaras (SA). However, the explicit algebraic stress model (EASM) in its k–ε form is impractically expensive to converge. Here, SA predictions lack a rotation correction term and this is likely to improve these results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A low‐Reynolds number kε turbulence model is proposed that incorporates diffusion terms and modified Cε(1,2) coefficients to amplify the level of dissipation in non‐equilibrium flow regions, thus reducing the kinetic energy and length scale magnitudes to improve prediction of adverse pressure gradient flows, involving flow separation and reattachment. Unlike the conventional kε model, it requires no wall function/distance parameter that bridges the near‐wall integration. The model is validated against a few flow cases, yielding predictions in good agreement with the direct numerical simulation (DNS) and experimental data. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Capability of the explicit algebraic stress models to predict homogeneous and inhomogeneous shear flows are examined. The importance of the explicit solution of the production to dissipation ratio is first highlighted by examining the algebraic stress models performance at purely irrotational strain conditions. Turbulent recirculating flows within sudden expanding pipes are further simulated with explicit algebraic stress model and anisotropic eddy viscosity model. Both models predict better stress–strain interactions, showing reasonable shear layer developments. The anisotropic stress field are also accurately predicted by the models, though the anisotropic eddy viscosity model of Craft et al. returns marginally better results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
A wall‐distance free k–ε turbulence model is developed that accounts for the near‐wall and low Reynolds number effects emanating from the physical requirements. The model coefficients/functions depend non‐linearly on both the strain rate and vorticity invariants. Included diffusion terms and modified Cε(1,2) coefficients amplify the level of dissipation in non‐equilibrium flow regions, thus reducing the kinetic energy and length scale magnitudes to improve prediction of adverse pressure gradient flows, involving flow separation and reattachment. The model is validated against a few flow cases, yielding predictions in good agreement with the direct numerical simulation (DNS) and experimental data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applications and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent Uduct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these models may be employed to simulate the turbulent curved flows in engineering applications.  相似文献   

11.
The work deals with the numerical solution of incompressible turbulent flow in a channel with a backward-facing step having various inclination angles. Also, the inclination of upper wall is considered. The mathematical model is based on the Reynolds averaged Navier–Stokes equations. The governing equations are closed by the explicit algebraic Reynolds stress (EARSM) model according to Wallin and Johansson or by linear eddy viscosity models (SST, TNT kω). The numerical solution is carried out by the implicit finite-volume method based on the artificial compressibility and by the finite-element method amd both approaches compared. The numerical simulations use as reference the experimental data by Makiola and Driver and Seegmiller in large aspect ratio channels. In these cases, the results are obtained by 2D and 3D simulations. Further narrow channel PIV experimental data are used as reference for 3D simulations.  相似文献   

12.
Non‐linear turbulence models can be seen as an improvement of the classical eddy‐viscosity concept due to their better capacity to simulate characteristics of important flows. However, application of non‐linear models demand robustness of the numerical method applied, requiring a stable discretization scheme for convergence of all variables involved. Usually, non‐linear terms are handled in an explicit manner leading to possible numerical instabilities. Thus, the present work shows the steps taken to adapt a general non‐linear constitutive equation using a new semi‐implicit numerical treatment for the non‐linear diffusion terms. The objective is to increase the degree of implicitness of the solution algorithm to enhance convergence characteristics. Flow over a backward‐facing step was computed using the control volume method applied to a boundary‐fitted coordinate system. The SIMPLE algorithm was used to relax the algebraic equations. Classical wall function and a low Reynolds number model were employed to describe the flow near the wall. The results showed that for certain combination of relaxation parameters, the semi‐implicit treatment proposed here was the sole successful treatment in order to achieve solution convergence. Also, application of the implicit method described here shows that the stability of the solution either increases (high Reynolds with non‐orthogonal mesh) or preserves the same (low Reynolds number applications). Additional advantages of the procedure proposed here lie in the possibility of testing different non‐linear expressions if one considers the enhanced robustness and stability obtained for the entire numerical algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Two-equation turbulence models for velocity and temperature (scalar) fields are developed to calculate wall shear flows under various flow conditions and related turbulent heat transfer under various wall thermal conditions. In the present models, we make the modified dissipation rates of both turbulent energy and temperature variance zero at a wall, though the wall limiting behavior of velocity and temperature fluctuations is reproduced exactly. Thus, the models assure computational expediency and convergence. Also, the present k- model is construted using a new type of expression for the Reynolds stress proposed by Abe et al. [Trans. JSME B 61 (1995) 1714–1721], whose essential feature lies in introducing the explicit algebraic stress model concept into the nonlinear k- formulation, and the present two-equation heat transfer model is constructed to properly take into account the effects of wall thermal conditions on the eddy diffusivity for heat. The models are tested with five typical velocity fields and four typical thermal fields. Agreement with experiment and direct simulation data is quite satisfactory.  相似文献   

14.
Numerical solutions to the three-dimensional, unsteady, incompressible Reynolds-averaged Navier-Stokes equations have been obtained for bubble-type vortex breakdown. Two different turbulence models were employed: (1) standard K-ε and (2) an explicit, regularized algebraic Reynolds stress model. Results are computed at a Reynolds number of 10,000. The algebraic Reynolds stress model produced a breakdown bubble with a larger length-to-diameter ratio than did the K-ε model. Breakdown also occurred at lower levels of adverse pressure gradient for the algebraic stress model than for the K-ε model. In each case single-cell breakdown structures resulted. This is contrasted with numerical calculations for laminar breakdown which reveal the existence of complex multicell bubble breakdown structures.  相似文献   

15.
In this paper, an immersed boundary (IB) method is developed to simulate compressible turbulent flows governed by the Reynolds‐averaged Navier‐Stokes equations. The flow variables at the IB nodes (interior nodes in the immediate vicinity of the solid wall) are evaluated via linear interpolation in the normal direction to close the discrete form of the governing equations. An adaptive wall function and a 2‐layer wall model are introduced to reduce the near‐wall mesh density required by the high resolution of the turbulent boundary layers. The wall shear stress modified by the wall modeling technique and the no‐penetration condition are enforced to evaluate the velocity at an IB node. The pressure and temperature at an IB node are obtained via the local simplified momentum equation and the Crocco‐Busemann relation, respectively. The SST k ? ω and S‐A turbulence models are adopted in the framework of the present IB approach. For the Shear‐Stress Transport (SST) k ? ω model, analytical solutions in near‐wall region are utilized to enforce the boundary conditions of the turbulence equations and evaluate the turbulence variables at an IB node. For the S‐A model, the turbulence variable at an IB node is calculated by using the near‐wall profile of the eddy viscosity. In order to validate the present IB approach, numerical experiments for compressible turbulent flows over stationary and moving bodies have been performed. The predictions show good agreements with the referenced experimental data and numerical results.  相似文献   

16.
17.
A new algebraic Reynold stress model is constructed with recourse to the realizability constraints. Model coefficients are made a function of strain and vorticity invariants through calibration by reference to homogeneous shear flow data. The anisotropic production in near‐wall regions is accounted for substantially by modifying the model constants Cε(1, 2) and adding a secondary source term in the ε equation. Hence, it reduces the kinetic energy and length scale magnitudes to improve prediction of adverse pressure gradient flows, involving flow separation and reattachment. To facilitate the evaluation of the turbulence model, some extensively used benchmark cases in the turbulence modelling are convoked. The comparisons demonstrate that the new model maintains qualitatively good agreement with the direct numerical simulation (DNS) and experimental data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The gridless smoothed particle hydrodynamics (SPH) method is now commonly used in computational fluid dynamics (CFD) and appears to be promising in predicting complex free‐surface flows. However, increasing flow complexity requires appropriate approaches for taking account of turbulent effects, whereas some authors are still working without any turbulence closure in SPH. A review of recently developed turbulence models adapted to the SPH method is presented herein, from the simplistic point of view of a one‐equation model involving mixing length to more sophisticated (and thus realistic) models like explicit algebraic Reynolds stress models (EARSM) or large eddy simulation (LES). Each proposed model is tested and validated on the basis of schematic cases for which laboratory data, theoretical or numerical solutions are available in the general field of turbulent free‐surface incompressible flows (e.g. open‐channel flow and schematic dam break). They give satisfactory results, even though some progress should be made in the future in terms of free‐surface influence and wall conditions. Recommendations are given to SPH users to apply this method to the modelling of complex free‐surface turbulent flows. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of this work is a priori evaluation and improvement of a non-linear model for turbulent flows using the results from direct numerical simulation of Navier–Stokes equations. The algebraic explicit non-linear model recently proposed by Rumsey C.L. et al. [1] is studied. The data base used here comes from a direct numerical simulation of a turbulent flow through a square duct. For this flow, this study shows that the hypothesis of equilibrium state for the anisotropic tensor is correct. The analysis is made using the maps of the second and third invariants of the Reynolds stress tensor. The approach used permits to conclude that the model using a wall function improves the numerical prediction of the anisotropy. To cite this article: O. El Yahyaoui et al., C. R. Mecanique 330 (2002) 27–34  相似文献   

20.
This paper examines the modeling of two-dimensional homogeneous stratified turbulent shear flows using the Reynolds-stress and Reynolds-heat-flux equations. Several closure models have been investigated; the emphasis is placed on assessing the effect of modeling the dissipation rate tensor in the Reynolds-stress equation. Three different approaches are considered; one is an isotropic approach while the other two are anisotropic approaches. The isotropic approach is based on Kolmogorov's hypothesis and a dissipation rate equation modified to account for vortex stretching. One of the anisotropic approaches is based on an algebraic representation of the dissipation rate tensor, while another relies on solving a modeled transport equation for this tensor. In addition, within the former anisotropic approach, two different algebraic representations are examined; one is a function of the Reynolds-stress anisotropy tensor, and the other is a function of the mean velocity gradients. The performance of these closure models is evaluated against experimental and direct numerical simulation data of pure shear flows, pure buoyant flows and buoyant shear flows. Calculations have been carried out over a range of Richardson numbers (Ri) and two different Prandtl numbers (Pr); thus the effect of Pr on the development of counter-gradient heat flux in a stratified shear flow can be assessed. At low Ri, the isotropic model performs well in the predictions of stratified shear flows; however, its performance deteriorates as Ri increases. At high Ri, the transport equation model for the dissipation rate tensor gives the best result. Furthermore, the results also lend credence to the algebraic dissipation rate model based on the Reynolds stress anisotropy tensor. Finally, it is found that Pr has an effect on the development of counter-gradient heat flux. The calculations show that, under the action of shear, counter-gradient heat flux does not occur even at Ri = 1 in an air flow. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号