首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The homopolyester of 4‐hydroxyphenylacetic acid (HPAA) was synthesized by one‐pot, slurry‐melt, and acidolysis melt polymerization techniques and was characterized by its inherent viscosity and IR and NMR spectra. Differential scanning calorimetry (DSC), polarizing light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD) studies of the homopolymer were carried out for its thermal and phase behavior. The results indicated that the yield and molecular weight of the polymer depended on the method of preparation; moreover, the acidolysis melt polymerization of the pure acetoxy derivative of HPAA was the best method for the preparation of high molecular weight poly(4‐oxyphenylacetate) (polyHPAA) without side reactions. DSC and PLM studies also showed that the thermal and optical properties depended largely on the polymerization conditions and inherent viscosity values. PolyHPAA did not show a clear texture typical of liquid‐crystalline polymers, whereas after cooling from the melt, structures similar to spherulitic crystals were observed. WAXD patterns showed a crystalline nature. The in vitro degradability of the polymer was also studied via the water absorption in buffer solutions of pH 7 and 10 at 30 and 60 °C; this was followed by Fourier transform infrared, inherent viscosity, DSC, thermogravimetric analysis, WAXD, and scanning electron microscopy techniques. Unlike Vectra®, which showed no degradation, polyHPAA showed an increase in hydrolytic degradation from 5.0 and 6.0% at 30 °C to 12.5 and 15.0% at 60 °C after 350 h in buffer solutions of pH 7 and 10, respectively. The results indicated a possible biomedical prosthetic application of poly(oxyphenylalkanoate)s such as polyHPAA with better crystallinity coupled with degradability as a substitute for poly(hydroxyalkanoates). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2430–2443, 2001  相似文献   

2.
The 73/27 4‐hydroxybenzoic acid (HBA)/2‐hydroxy‐6‐naphthoic acid (HNA) copolyester was prepared by the inclusion of two crosslinkable oligomers. These systems were synthesized by melt polymerization and characterized using differential scanning calorimetry, thermogravimetric analysis, polarized optical microscope and wide‐angle X‐ray diffraction. The transition from thermoplastic to thermosetting character occurred when 10 wt% or above of oligomer was added to the 73/27 HBA/HNA random mixture. The melt rheology of the HBA/HNA copolyesters containing two oligomers was investigated. The copolyesters displayed an increase in complex viscosity and transition from liquid‐like to solid‐like behavior as the oligomer content increased, and finally there was no melting transition when the oligomer content reached 10 wt%. Shear storage modulus measured by a dielectric mechanical analysis decreased slightly with increasing oligomer content. An adhesive test using an aluminum sheet revealed an increase in the lap shear strength up to 5 wt% of oligomer content without a significant reduction in shear storage modulus. On the other hand, the 73/27 HBA/HNA containing 10 wt% oligomer displayed a dramatic decrease in lap shear strength. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Melt‐processable liquid‐crystalline terpolyesters of 4‐hydroxyphenylacetic acid (HPAA) and 3‐(4‐hydroxyphenyl)propionic acid (HPPA) with terephthalic acid and 2,6‐naphthalene diol were synthesized by one‐step acidolysis melt polycondensation followed by postpolymerization and were characterized with viscosity studies, Fourier transform infrared (FTIR) and NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), polarized light microscopy, and wide‐angle X‐ray diffraction. The melting behaviors and liquid‐crystalline transition temperatures of the terpolyesters were dependent on the composition of the HPAA/HPPA content. The transition temperatures of the polyesters could be effectively reduced by the introduction of an even number of built‐in short methylene spacers in combination with the 2,6‐naphthalene offset structure. A terpolyester with an HPPA content of 33% (NTP33) showed optimum properties for the glass‐transition temperature, around 71 °C, and the melting temperature, near 240 °C, with a Schlieren nematic texture. The polymer showed excellent flow behavior in a Brabender plasticorder. It was also thermally stable up to 400 °C. NTP33 showed 2.5% in vitro hydrolytic degradation in buffer solutions of pH 10 at 60 °C after 540 h. Considerable enzymatic degradation was also observed with porcine pancreas lipase/buffer solutions in comparison with Candida rugosa lipase after 60 days. The degradation was also followed with FTIR, DSC, and TGA. Apart from the temperature and pH of the buffer solution, several structural parameters, such as the aromatic content, crystallinity percentage, and composition of the polymer, affected the degradation behavior. FTIR studies indicated the involvement of chain scission during degradation. Scanning electron microscopy studies further showed that surface erosion also played a major role in the degradation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1845–1857, 2002  相似文献   

4.
Conventional melt transesterification successfully produced high‐molecular‐weight segmented copolyesters. A rigid, high‐Tg polyester precursor containing the cycloaliphatic monomers, 2,2,4,4‐tetramethyl‐1,3‐cyclobutanediol, and dimethyl‐1,4‐cyclohexane dicarboxylate allowed molecular weight control and hydroxyl difunctionality through monomer stoichiometric imbalance in the presence of a tin catalyst. Subsequent polymerization of a 4000 g/mol polyol with monomers comprising the low‐Tg block yielded high‐molecular‐weight polymers that exhibited enhanced mechanical properties compared to a nonsegmented copolyester controls and soft segment homopolymers. Reaction between the polyester polyol precursor and a primary or secondary alcohol at melt polymerization temperatures revealed reduced transesterification of the polyester hard segment because of enhanced steric hindrance adjacent to the ester linkages. Differential scanning calorimetry, dynamic mechanical analysis, and tensile testing of the copolyesters supported the formation of a segmented multiblock architecture. Further investigations with atomic force microscopy uncovered unique needle‐like, interconnected, microphase separated surface morphologies. Small‐angle X‐ray scattering confirmed the presence of microphase separation in the segmented copolyesters bulk morphology. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Copolyesters of 4-hydroxybenzoic acid (HBA) and 3-(4'-hydroxyphenoxy)benzoic acid were prepared by two different procedures. Either the acetyl derivatives were polycondensed in bulk at temperatures up to 300°C or they were polycondensed in an inert reactions medium (Marlotherm-S) at 340°C. Two analogous series of copolyesters were synthesized from 4-acetoxybenzoic acid (4-HBA) and 4-(3'-acetoxyphenoxy)benzoic acid. The copolyesters were characterized by elemental analyses, inherent viscosities, 1H- and 13C-NMR spectroscopy, WAXS and DSC measurements, and by optical microscopy. All copolyesters synthesized in solution were highly crystalline materials which were neither meltable nor soluble. Part of the copolyesters prepared by polycondensation in bulk were semi-crystalline, meltable, and soluble. The copolyester derived from 3-(4'-hydroxyphenoxy)benzoic acid proved to be thermotropic forming a nematic melt, whereas the isomeric copolyesters of 4-(3'-hydroxyphenoxy)benzoic acid only formed isotropic melts. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Cyclic oligo(butylene 2,5‐furandicarboxylate) and ɛ‐caprolactone were copolymerized in bulk at 130–150 °C by enzymatic ring opening polymerization using CALB as catalyst. Copolyesters within a wide range of compositions were thus synthesized with weight‐average molecular weights between 20,000 and 50,000, the highest values being obtained for equimolar or nearly equimolar contents in the two components. The copolyesters consisted of a blocky distribution of the ɛ‐oxycaproate (CL) and butylene furanoate (BF) units that could be further randomized by heating treatment. The thermal stability of these copolyesters was comparable to those of the parent homopolyesters (PBF and PCL), and they all showed crystallinity in more or less degree depending on composition. Their melting and glass‐transition temperatures were ranging between those of PBF and PCL with values increasing almost linearly with the content in BF units. The ability of these copolyesters for crystallizing from the melt was evaluated by comparative isothermal crystallization and found to be favored by the presence of flexible ɛ‐oxycaproate blocks. These copolyesters are essentially insensitive to hydrolysis in neutral aqueous medium but they became noticeably degraded by lipases in an extend that increased with the content in CL units. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 290–299  相似文献   

7.
Copolyesters containing rigid segments (naphthalene and terephthalene) and flexible seg-ments (aliphatic diol) structure were synthesized from DMN/DMT/EG (2,6-dimethyl naphthalate/1,4-dimethyl terephthalate/ethylene glycol) ternary monomers with various mole ratios. Copolyesters having intrinsic viscosities of 0.52–0.65 dL/g were obtained by melt polycondensation in the presence of metallic catalysts. The effect of reaction tem-perature and time on the formation of the copolyesters was investigated to obtain an op-timum condition for copolyester manufacturing. The optimum condition for PNT (poly-ethylene naphthalate terephthalate) copolyester manufacturing is the transesterification under nitrogen atmosphere for 4 h at a temperature of 185±2°C followed by polymerization under 2 mm Hg for 2 h at a temperature of 280°C. Most copolyesters have better solubilities than poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET) in various solvents. The effect of the starting mole ratio of DMN, DMT, and EG on the thermal properties of the resulted copolyesters was also investigated using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Glass transition temperatures of copolyesters were in the range of 70.7–115.2°C, and 10% weight loss in nitrogen were all above 426°C. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
Random copolyesters based on 1,4‐butanediol and different ratios between adipic and terephthalic units were synthesized from thermal polycondensation of the appropriate mixture of monomers or by melt transesterification of the mixture of homopolymers. 1H NMR spectroscopy makes feasible the study of the average block lengths of polymers once synthesized and after degradation in different media. Calorimetric data are reported, including those referred to the study of isothermal and nonisothermal crystallizations. Degradability of samples was evaluated by different methods including NMR and thermal analysis, evaluation of molecular weight by gel permeation chromatography or from intrinsic viscosity measures, scanning electron micrographs, and changes in mechanical properties. Distilled water at 70 °C acidic conditions provided by a pH 2.3 aqueous medium and enzymatic media containing lipases from Pseudomonas cepacia or Candida cylindracea were considered in this study. The degradability of the studied copolyesters strongly depends on the terephthalate content and the degradation media. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4141–4157, 2002  相似文献   

9.

In this study a range of wholly aromatic copolyesters based on kink m‐acetoxybenzoic acid (m‐ABA) monomer (33 mol%) and equimolar‐linear p‐acetoxybenzoic acid (p‐ABA), hydroquinone diacetate (HQDA) and terephthalic acid (TPA) monomers (67 mol%) have been synthesized by melt polycondensation reaction process at 280°C and 260°C for different time intervals. Characterization of copolyesters were performed by solution viscosity measurement, wide–angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), hot‐stage polarized light microscopy, proton‐nuclear magnetic resonance analysis (1H‐NMR). According to the results obtained, copolyesters showed thermotropic liquid crystalline behavior in an appropriate temperature range. The copolyesters were prepared in high yields. It was observed that the intrinsic viscosities of the copolyesters are increased regularly with increasing polymerization time and temperature. All the copolyesters were soluble in a trifluoroacetic acid/dichloromethane (30:70 v/v) except the copolyesters which were synthesized at 280°C in 5 h. According to the WAXD results; the degree of crystallinity of copolyesters were found to be between 5–15%. DSC and hot stage polarized light microscopy results showed that all the copolyesters are melt processable and a significant molecular interaction exist in a very broad temperature range (160°C and 165°C) in the nematic mesophase. The Tg values are increased with an increasing polycondensation reaction time and temperature and they were observed between 93–126°C. Fibers prepared by a hand‐spinning technique from the polymer melt exhibit well‐developed fibrillar structure parallel to the fiber axis.  相似文献   

10.
A series of copolyesters were prepared by the incorporation of p‐hydroxybenzoic acid (HBA), hydroquinone (HQ), and terephthalic acid (TA) into poly(ethylene terephthalate) (PET). On the basis of viscosity measurements, high molar mass copolyesters were obtained in the syntheses, and 1H‐NMR analyses indicated the total insertion of comonomers. They exhibit nematic phase above melting temperature, as observed by polarized light microscope (PLM). Their crystallization and melting behaviors were also studied by differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD). It was found that these copolyesters are more crystalline than copolyesters prepared from PET and HBA. Introduction of HQ/TA disrupts longer rigid‐rod sequences formed by HBA, and thus enhances molecular motion and increases crystallization rate and crystallinity. Isothermal crystallization at solid phase polymerization conditions (up to 24 h at 200°C) resulted in increased copolymer randomness (by NMR) and higher melting point, the latter attributed to structural annealing. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 369–377, 1999  相似文献   

11.
Living ω‐aluminum alkoxide poly‐ϵ‐caprolactone and poly‐D,L ‐lactide chains were synthesized by the ring‐opening polymerization of ϵ‐caprolactone (ϵ‐CL) and D,L ‐lactide (D,L ‐LA), respectively, and were used as macroinitiators for glycolide (GA) polymerization in tetrahydrofuran at 40 °C. The P(CL‐b‐GA) and P(LA‐b‐GA) diblock copolymers that formed were fractionated by the use of a selective solvent for each block and were characterized by 1H NMR spectroscopy and differential scanning calorimetry analysis. The livingness of the operative coordination–insertion mechanism is responsible for the control of the copolyester composition, the length of the blocks, and, ultimately, the thermal behavior. Because of the inherent insolubility of the polyglycolide blocks, microphase separation occurs during the course of the sequential polymerization, resulting in a stable, colloidal, nonaqueous copolymer dispersion, as confirmed by photon correlation spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 294–306, 2001  相似文献   

12.
The synthesis of hydroxyproline‐based telechelic prepolymers by the condensation polymerization of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline methyl ester was investigated. All the polymerizations were carried out in the melt with stannous octoate as the catalyst and with different diols. The products were characterized by differential scanning calorimetry, proton nuclear magnetic resonance, infrared spectrophotometry, and inherent viscosity (ηinh). According to the analytic results, the ηinh value of the prepolymers depended on the kind and amount of diols that were added. With an increase in the 1,6‐hexanediol feed from 2 to 10 mol %, there was a decrease in ηinh from 0.78 to 0.41 along with a decrease in the glass‐transition temperature (Tg ) from 63 to 42 °C. When 2 mol % of different kinds of diols were used, ηinh ranged from 0.78 to 0.21, and Tg varied from 70 to 43 °C. These new prepolymers could be linked to poly(ester‐urethane) by the chain extender 1,6‐hexamethylene diisocyanate. The poly(ester‐urethane) was amorphous, and the Tg was 76 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2449–2455, 2000  相似文献   

13.
The synthesis, characterization, and some properties of new copolyesters of poly(butylene terephthalate) (PBT) and poly(ethylene terephthalate) (PET) based on L ‐arabinitol and xylitol are described. These copolyesters were obtained by polycondensation reaction in the melt of mixtures of 1,4‐butanediol or ethylene glycol and 2,3,4‐tri‐O‐benzyl‐L ‐arabinitol or 2,3,4‐tri‐O‐benzyl‐xylitol with dimethyl terephthalate. Their weight‐average molecular weights ranged between 7000 and 55,000, with polydispersities ranging from 1.4 to 4.7. Copolymers containing 1,4‐butanediol could be analyzed by NMR, and were found to have a statistical microstructure. All these copolyesters were thermally stable, with degradation temperatures well above 300 °C. With increasing amounts of alditol in the copolyester, the melting temperature and crystallinity decreased in both series, and the glass transition temperature increased for the PBT series and decreased for the PET series. Only PBT‐derived copolyesters containing a maximum of 10% alditol units showed discrete scattering characteristic of crystalline material. No substantial differences in either structure or properties were observed between the L ‐arabinitol and xylitol copolyester series. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5167–5179, 2008  相似文献   

14.
Liquid‐crystalline (LC) polyesters based on hexanediol or butanediol, dimethyl 4,4′‐biphenyldicarboxylate, and a sugar‐based diol, isosorbide or isomanide, were prepared with conventional melt polymerization. 1H NMR spectroscopy confirmed that 50 mol % of the charged sugar diol was successfully incorporated into various copolyesters. Modest molecular weights were obtained, although they were typically lower than those of polyester analogues that did not contain sugar‐based diols. Thermogravimetric analysis demonstrated that the incorporation of isosorbide or isomanide units did not reduce the thermal stability in a nitrogen atmosphere. Melting points that ranged from 190 to 270 °C were achieved as a function of the copolyester composition. The lined focal conic fan textures, typical indications of a chiral smectic C LC phase, were observed upon the shearing of the LC melt under polarized light microscopy. Atomic force microscopy revealed that the twisted molecular orientation in the chiral LC phase induced periodically soft lamellar structures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2512–2520, 2003  相似文献   

15.
In this study, a new series of semiflexible liquid crystalline (LC) polyesters and poly(ester‐amide)s were synthesized and characterized. Polymers based on 4‐hydroxybenzoic acid (4‐HBA), 6‐hydroxy‐2‐naphthoic acid (HNA), suberic acid (SUA), and sebacic acid (SEA) were modified with hydroquinone (HQ) and different concentrations of 4‐acetamidophenol (AP) to obtain a polyester and two poly(ester‐amide)s, respectively. All polymers were successfully prepared using conventional melt‐condensation techniques. The polymers were characterized by inherent viscosity measurements, SEC, hot‐stage polarizing microscopy, DSC, and TGA. The mechanical behavior was investigated using DMTA and tensile testing. All linear polymers have Tgs in the range of 50–80 °C and melt between 120 and 150 °C. Our polymers display good thermooxidative stabilities (5% wt loss at ~ 400 °C) and exhibit homogeneous nematic melt behavior over a wide temperature range (ΔN ~ 250 °C). The liquid crystal phase was lost when high concentrations of nonlinear monomers such as 3‐HBA (>27 mol %) and resorcinol (RC) (>23 mol %) were incorporated. The LC polyester based on 4‐HBA/HNA/HQ/SUA/SEA could easily be processed into good quality films and fibers. The films display good mechanical properties (E′ ~ 4 GPa) and high toughness, that is, ~ 15% elongation at break, at room temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6565–6574, 2008  相似文献   

16.
Poly(ethylene terephthalate‐co‐5‐nitroisophthalate) copolymers, abbreviated as PETNI, were synthesized via a two‐step melt copolycondensation of bis(2‐hydroxyethyl) terephthalate and bis(2‐hydroxyethyl) 5‐nitroisophthalate mixtures with molar ratios of these two comonomers varying from 95/5 to 50/50. Polymerization reactions were carried out at temperatures between 200 and 270 °C in the presence of tetrabutyl titanate as a catalyst. The copolyesters were characterized by solution viscosity, GPC, FTIR, and NMR spectroscopy. They were found to be random copolymers and to have a comonomer composition in accordance with that used in the corresponding feed. The copolyesters became less crystalline and showed a steady decay in the melting temperature as the content in 5‐nitroisophthalic units increased. They all showed glass‐transition temperatures superior to that of PET with the maximum value at 85 °C being observed for the 50/50 composition. PETNI copolyesters appeared stable up to 300 °C and thermal degradation was found to occur in two well‐differentiated steps. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1934–1942, 2000  相似文献   

17.
The methanolysis of poly(ethylene terephthalate) (PET) copolymers containing 5‐nitroisophthalic units was investigated. Random copolyesters containing 10 and 30 mol % of such units were prepared via a two‐step melt copolycondensation of bis(2‐hydroxyethyl) terephthalate (BHET) and bis(2‐hydroxyethyl) 5‐nitroisophthalate (BHENI) in the presence of tetrabutyl titanate as a catalyst. First, the susceptibility of these two comonomers toward methanolysis was evaluated, and their reaction rates were estimated with high‐performance liquid chromatography. BHENI appeared to be much more reactive than both BHET and bis(2‐hydroxyethyl) isophthalate. The methanolysis of PET and the copolyesters was carried out at 100 °C, and the degradation process was followed by changes in the weight and viscosity, gel permeation chromatography, differential scanning calorimetry, and 1H and 13C NMR spectroscopy. The copolyesters degraded faster than PET, and the rate of degradation increased with the content of nitrated units. The products resulting from methanolysis were concluded to be dimethyl terephthalate, dimethyl 5‐nitroisophthalate, ethylene glycol, and small, soluble oligomers. For both PET and the copolyesters, an increase in crystallinity was observed during the degradation process, indicating that methanolysis preferentially occurred in the amorphous phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 76–87, 2002  相似文献   

18.
Structurally rigid copolyester thermoplastics were synthesized from 1,4‐cyclohexanedimethanol and the diesters dimethyl biphenyl‐4,4′‐dicarboxylate and dimethyl 2,6‐naphthalenedicarboxylate (DMN) via conventional melt transesterification. Conventional differential scanning calorimetry (CDSC) showed all compositions to exhibit multiple endotherms upon heating. Wide‐angle X‐ray diffraction analysis showed copolyester compositions to exhibit the crystalline structure of either the homopolyester Poly(1,4‐cyclohexylenedimethylene 2,6‐naphthalate) (PCN) or the homopolyester Poly(1,4‐cyclohexylenedimethylene 4,4′‐bibenzoate) (PCB), but not both simultaneously. Further thermal analysis using CDSC and fast DSC investigated the origin of the multiple endotherm behavior. While three endotherms are observed for low heating rates, the upper two endotherms appear to merge at heating rates about 1–5 °C s?1 and a single endotherm remains above heating rates about 10–50 °C s?1. While the behavior of the upper two endotherms is undeniably consistent with the mechanism of melting–recrystallization–remelting (MRR), we suggest that the low endotherm is likely associated with the melting of constrained secondary crystals, although MRR effects cannot be ruled out. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 973–980  相似文献   

19.
To synthesize the copolyester of poly(β‐hydroxybutyrate) (PHB) and poly(?‐caprolactone) (PCL), the transesterification of PHB and PCL was carried out in the liquid phase with stannous octoate as the catalyzer. The effects of reaction conditions on the transesterification, including catalyzer concentration, reaction temperature, and reaction time, were investigated. The results showed that both rising reaction temperature and increasing reaction time were advantageous to the transesterification. The sequence distribution, thermal behavior, and thermal stability of the copolyesters were investigated by 13C NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, wide‐angle X‐ray diffraction, optical microscopy, and thermogravimetric analysis. The transesterification of PHB and PCL was confirmed to produce the block copolymers. With an increasing PCL content in the copolyesters, the thermal behavior of the copolyesters changed evidently. However, the introduction of PCL segments into PHB chains did not affect its crystalline structure. Moreover, thermal stability of the copolyesters was little improved in air as compared with that of pure PHB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1893–1903, 2002  相似文献   

20.
Four series of liquid‐crystalline copolyesters were prepared by the transesterification of poly(ethylene terephthalate) (PET) with 4‐acetoxybenzoic acid (4‐ABA) or mixtures of 4‐ABA and acetylsalicylic acid (ASA). Two series consisted of 30 mol % PET, and the other two series consisted of 40 mol % PET. The molar ratio of 4‐HBA and ASA was varied in all four series from 0 to 25 mol %. One 30% PET series and one 40% PET series were prepared with the addition of acetic acid, which caused a more perfect randomization of the sequence but yielded slightly lower molecular weights. The incorporation of ASA reduced the crystallinity, which vanished completely at a salicylic acid (SA) content greater than 10 mol %. SA also reduced the stability of the nematic phase, but all the copolyesters were thermotropic up to a 20 mol % SA content. Furthermore, the molecular weights decreased with the increasing incorporation of ASA. Despite this negative trend, the melt viscosity and the storage and loss moduli passed a maximum between 5 and 10% SA. Obviously, the incorporation of SA favored the formation of entanglements. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2013–2022, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号