首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermoresponsive, biodegradable polymeric hydrogel networks are used widely in medicinal applications. Poly(d ,l ‐lactic acid‐co‐glycolic acid)‐b‐poly(ethylene glycol)‐b‐poly(d ,l ‐lactic acid‐co‐glycolic acid) (PLGA‐PEG‐PLGA) triblock copolymers exhibit a sol–gel transition upon heating. The effect of PLGA block and PEG chain molecular weights (MWs) on the gelling temperature of polymer aqueous solution (20% w/w) is described. All polymer solutions convert into a hard gel within 2 °C of the gelling temperature. The release properties of the gels were displayed using paracetamol as a representative drug. A linear relation is described between the gelling temperature and PLGA block MW. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 35–39  相似文献   

2.
The hydrolytic degradation of technical poly(ethylene terephthalate) (PET) was investigated by means of different methods such as size-exclusion chromatography (SEC), viscometry, light-scattering, thin-layer chromatography, end-group titration, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The long-term degradation was simulated by exposing PET filament yarns to aqueous neutral conditions at 90°C for up to 18 weeks. By means of MALDI-MS and thin-layer chromatography, the formation of different oligomers was obtained during polymer degradation. As expected, an ester scission process was found generating acid terminated oligomers (H-[GT]m-OH) and T-[GT]m-OH and ethylene glycol terminated oligomers (H-[GT]m-G), where G is an ethylene glycol unit and T is a terephthalic acid unit. Additionally, the scission of the ester bonds during the chemical treatment led to a strong decrease in the number of cyclic oligomers ([GT]m). The occurrence of di-acid terminated species demonstrated a high degree of degradation. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2183–2192, 1997  相似文献   

3.
Resorbable poly(ester anhydride) networks based on ε‐caprolactone, L ‐lactide, and D,L ‐lactide oligomers were synthesized. The ring‐opening polymerization of the monomers yielded hydroxyl telechelic oligomers, which were end‐functionalized with succinic anhydride and reacted with methacrylic anhydride to yield dimethacrylated oligomers containing anhydride bonds. The degree of substitution, determined by 13C NMR, was over 85% for acid functionalization and over 90% for methacrylation. The crosslinking of the oligomers was carried out thermally with dibenzoyl peroxide at 120 °C, leading to polymer networks with glass‐transition temperatures about 10 °C higher than those of the constituent oligomers. In vitro degradation tests, in a phosphate buffer solution (pH 7.0) at 37 °C, revealed a rapid degradation of the networks. Crosslinked polymers based on lactides exhibited high water absorption and complete mass loss in 4 days. In ε‐caprolactone‐based networks, the length of the constituent oligomer determined the degradation: PCL5‐AH, formed from longer poly(ε‐caprolactone) (PCL) blocks, lost only 40% of its mass in 2 weeks, whereas PCL10‐AH, composed of shorter PCL blocks, completely degraded in 2 days. The degradation of PCL10‐AH showed characteristics of surface erosion, as the dimensions of the specimens decreased steadily and, according to Fourier transform infrared, labile anhydride bonds were still present after 90% mass loss. © 2003 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3788–3797, 2003  相似文献   

4.
Novel ionizable polymer networks were prepared from oligo(ethylene glycol) (OEG) multiacrylates and acrylic acid (AA), employing bulk radical photopolymerization techniques. The properties of these materials exhibited a complex dependence on the network structure and composition. Penetrant sorption experiments demonstrated that the crosslinked structure of the copolymers depended very strongly on the AA content as well as the number of ethylene glycol groups. The impact of varying the AA content and the oligo(ethylene glycol) chain length on the polymer chain dynamics was examined using diffusion and 13C NMR relaxation studies. The penetrant uptake studies indicated a coupling of Fickian and relaxation‐driven contributions to the swelling behavior. The effect of increasing the AA content on the characteristic chain relaxation time was reversed as the oligo(ethylene glycol) chain length was varied, indicating that chain relaxation is controlled by structural considerations, for shorter oligo(ethylene glycol) chains, and by compositional considerations, for longer oligo(ethylene glycol) chains. Measured compositional effects on solid state 13C NMR relaxation times supported these conclusions. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1953–1968, 1999  相似文献   

5.
New degradable poly(ether‐anhydride) networks were synthesized by UV photopolymerization. Dicarboxylated poly(ethylene glycol) (PEG) or poly(tetramethylene glycol) (PTMG) was reacted with an excess of methacrylic anhydride to form dimethacrylated macromers containing anhydride linkages. The percent of conversion for the macromer formation was more than 80% at 60 °C after 24 h. 1H NMR and IR spectroscopies show the presence of anhydride linkages in the macromer. In vitro degradation studies were carried out at 37 °C in PBS with crosslinked polymer networks formed by UV irradiation. All PEG‐based polymers degraded within 2 days, while PTMG‐based polymers degraded by 50% of the initial weight after 14 days. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1277–1282, 2000  相似文献   

6.
Poly(ethylene terephthalate) (PET) was rapidly crystallized through thermoreversible gelation in a liquid ethylene glycol oligomer or in epoxy resin. The solutions formed gel rapidly on cooling. Polarized light microscopy and small-angle light scattering showed that these gels contain large, regular PET spherulites. The gels may be formed by two consecutive processes: the phase separation and crystallization, and gelation by formation of a three-dimensional PET network in the oligomer solvents, where the nodes of the network are PET spherulites. The crystallinity of PET recovered from polymer/oligomer gels is near 72% measured by wide-angle X-ray diffraction method, which is about 20% higher than PET samples crystallized by solution crystallization in small molecule solvent, high temperature annealing, and stretching techniques. It takes only a few minutes to form the highly crystalline phase PET in the PET/oligomer system, and the crystallinity of the dried gel is independent of the concentration of the original solution. Excimer-fluoresence and Raman spectroscopic studies indicated that PET recovered from the gels are in an ordered state with few chain entanglements. The entanglement density of the recovered PET recovered from a 20 wt % solution in ethylene glycol oligomer is as low as that of freeze-extracted PET from a 0.5 wt % solution in phenol. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1219–1225, 1998  相似文献   

7.
Polyethylene glycol (PEG) is widely used as a carrier to improve the pharmaceutical properties of drugs with low molecular weight. However, PEG has few functional groups (usually two) for drug conjugation and the resulting low drug content (1–2%) has hampered its clinical applications. For this study, we synthesized biodegradable poly(ethylene glycol‐co‐anhydride). This polyester‐based polymer possesses multiple carboxylic acid groups that can be used as facile drug carriers. Two anticancer drugs, camptothecin (CPT) and doxorubicin (DOX) were loaded into the carrier and their releasing properties and in vitro anticancer activities were studied. The polymer–drug conjugates exhibited esterase‐promoted degradation and drug release. Their cytotoxicity against the human ovarian cancer cell line SKOV‐3 was comparable to unconjugated drugs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 507–515  相似文献   

8.
Aliphatic polyesters and polyphosphoesters (PPEs) have received much interest in medical applications due to their favorable biocompatibility and biodegradability. In this work, novel amphiphilic triblock copolymers of PPE and poly(L ‐lactic acid) (PLLA) with various compositions were synthesized and characterized. The blocky structure was confirmed by GPC analyses. These triblock copolymers formed micelles composed of hydrophobic PLLA core and hydrophilic PPE shell in aqueous solution. Critical micellization concentrations of these triblock copolymers were related to the polymer compositions. Incubation of micelles at neutral pH followed by GPC analyses revealed that these polymer micelles were hydrolysized and resulted in decreased molecular weights and small oligomers, whereas its degradation in basic and acid mediums was accelerated. MTT assay also demonstrated the biocompatibility against HEK293 cells. These biodegradable polymers are potential as drug carriers for biomedical application. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6425–6434, 2008  相似文献   

9.
A series of 2‐aminopyridine Ni(II) complexes bearing different substituent groups {(2‐PyCH2NAr)NiBr, Ar = 2,4,6‐trimethylphenyl ( 3a) , 2,6‐dichlorophenyl ( 3b ), 2,6‐dimethylphenyl ( 3c) , 2,6‐diisopropylphenyl ( 3d ), 2,6‐difluorophenyl ( 3e ); (2‐PyCH2NHAr)2NiBr2, Ar = 2,6‐diisopropylphenyl ( 4a )} have been synthesized and investigated as precatalysts for ethylene polymerization in the presence of methylaluminoxane (MAO). High molecular weight branched polymers as well as short‐chain oligomers were simultaneously produced with these complexes. Enhancing the steric bulk of the ortho‐aryl‐substituents of the catalyst resulted in higher ratio of solid polymer to oligomer and higher molecular weight of the polymer. With ortho‐haloid‐substitution, the catalysts afforded a product with low polymer/oligomer ratio ( 3b ) and even only oligomers ( 3e ) in which C14H28 had the maximum content. Compared with complex 3d containing ionic ligand, complex 4a containing neutral ligand exhibited obviously low catalytic activity for ethylene polymerization. The molecular weight, molecular weight distribution, and microstructure of the resulted polymer were characterized by gel permeation chromatography and 13C NMR spectrogram. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1618–1628, 2008  相似文献   

10.
Chromatographic techniques are described which can be used to isolate and identify the linear and the cyclic oligomers of poly(ethylene terephthalate). Extraction of the oligomers from high molecular weight polymer produces at least eight different cyclic species, some of which are isolated and identified. The cyclic dimer, the cyclic trimer, and the cyclic tetramer of poly(ethylene terephthalate) have also been prepared by acid chloride esterification and transesterification. Similar materials can be isolated from the ethylene glycol distillate obtained from the polymer melt. The mechanism of cyclic oligomer formation has been studied by determining the rate of formation of the cyclic oligomers during polymerization and during melt extrusion of polyesters which did not initially contain cyclic oligomers. The rate of formation depends upon the concentration of hydroxyl groups; hence, the cyclic oligomers are formed by transesterification from the chain ends or cyclodepolymerization. Therefore oligomers are inevitably produced during polymerization.  相似文献   

11.
The effects of hydrogen in ethylene polymerization and oligomerization with different bis(imino)pyridyl iron(II) complexes immobilized on supports of type MgCl2/AlEtn(OEt)3–n have been investigated. Hydrogen has a significant activating effect on polymerization catalysts containing relatively bulky bis(imino)pyridyl ligands, but this is not the case in ethylene oligomerization with a catalyst containing relatively little steric bulk in the ligand. It was found that the presence of hydrogen in the latter system led to decreased activity and an overall increase rather than a decrease in product molecular weight, indicating deactivation of active species producing low molecular weight polymer and oligomer. Decreased formation of vinyl‐terminated oligomers in the presence of hydrogen can therefore contribute to the activating effect of hydrogen in ethylene polymerization with immobilized iron catalysts, if it is assumed that hydrogen activation is related to chain transfer after a 2,1‐insertion of a vinyl‐terminated oligomer into the growing polymer chain. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4054–4061, 2007  相似文献   

12.
New fluoroalkyl end‐capped oligomers/silica gel polymer hybrids‐low‐molecular weight biocide (hibitane) composites were prepared by the reactions of tetraethoxysilane (TEOS) with fluoroalkyl end‐capped N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide oligomer, N,N‐dimethylacrylamide oligomers, and acrylic acid oligomers in methanol under acidic conditions at room temperature. The presence of hibitane in the composites was clarified by the use of elementary analyses of nitrogen in fluorinated acrylic acid oligomer composite and thermogravimetric analysis (TGA) of these fluorinated composites. Thermal stability of fluorinated composites thus obtained were found to increase significantly compared to those of the parent fluorinated oligomers. Thermal stability of fluorinated N,N‐dimethylacrylamide oligomer, acrylic acid oligomer/silica gel polymers hybrid‐hibitane composites decreased compared to those of the corresponding fluorinated oligomers/silica gel polymer hybrids; however, the thermal stability of fluorinated N‐(1,1‐dimethyl‐3‐oxobutylacryl)amide oligomer/silica gel polymer hybrid‐hibitane composite increased significantly compared to that of the corresponding fluorinated oligomer hybrid. The sol methanol solutions of these fluorinated composites were applied to the surface modification of glass to exhibit not only a strong oleophobicity imparted by end‐capped fluoroalkyl groups in oligomers but also a good hydrophilicity on the glass surface. Fluorinated oligomers/silica gel polymer hybrids‐hibitane composites were found to exhibit high anti‐bacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Therefore, these fluorinated hibitane composites are suggested to have high potential for new attractive functional materials through not only their excellent surface active property imparted by fluorine and their thermal stability but also through their anti‐bacterial activity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Because poly(L ‐lactic acid) (PLLA) is a biodegradable polyester with low immunogenicity and good biocompatibility, it is used as a biomaterial. However, hydrophobic PLLA does not have any reactive groups. Thus, its application is limited. To increase the hydrophilicity of PLLA and accelerate its degradation rate, functionalized pendant groups and blocks were introduced through copolymerization with citric acid and poly(ethylene glycol) (PEG), respectively. This article describes the synthesis and characterization of poly(L ‐lactic‐co‐citric acid) (PLCA)‐PLLA and PLCA‐PEG multiblock copolymers. The results indicated that the hydrolysis rate was enhanced, and the hydrophilicity was improved because of the incorporation of carboxyl groups in PLCA‐PLLA. The joining of the PEG block led to improved hydrophilicity of PLCA, and the degradation rate of PLCA‐PEG accelerated as compared with that of PLCA‐PLLA. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2073–2081, 2003  相似文献   

14.
A series of aliphatic–aromatic multiblock copolyesters consisting of poly(ethylene‐co‐1,6‐hexene terephthalate) (PEHT) and poly(L ‐lactic acid) (PLLA) were synthesized successfully by chain‐extension reaction of dihydroxyl terminated PEHT‐OH prepolymer and dihydroxyl terminated PLLA‐OH prepolymer using toluene‐2,4‐diisoyanate as a chain extender. PEHT‐OH prepolymers were prepared by two step reactions using dimethyl terephthalate, ethylene glycol, and 1,6‐hexanediol as raw materials. PLLA‐OH prepolymers were prepared by direct polycondensation of L ‐lactic acid in the presence of 1,4‐butanediol. The chemical structures, the molecular weights and the thermal properties of PEHT‐OH, PLLA‐OH prepolymers, and PEHT‐PLLA copolymers were characterized by FTIR, 1H NMR, GPC, TG, and DSC. This synthetic method has been proved to be very efficient for the synthesis of high‐molecular‐weight copolyesters (say, higher than Mw = 3 × 105 g/mol). Only one glass transition temperature was found in the DSC curves of PEHT‐PLLA copolymers, indicating that the PLLA and PEHT segments had good miscibility. TG curves showed that all the copolyesters had good thermal stabilities. The resulting novel aromatic–aliphatic copolyesters are expected to find a potential application in the area of biodegradable polymer materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5898–5907, 2009  相似文献   

15.
The synthesis of a family of polymer stars with arms of varied tacticities is discussed. The effect of polymer tacticity on the physical properties of these polymer stars is dramatic. Dipentaerythritol cores support six poly(lactic acid) arms. Lewis acidic tin and/or aluminum catalysts control the polymerization to afford polymer stars of variable tacticity. Analysis of these polymers by 1H NMR spectroscopy, thermogravimetric analysis, powder X‐ray diffraction, and differential scanning calorimetry reveals the effects of tacticity control on the physical properties of the polymer stars. Hydrolytic decomposition studies suggest that the degradation profile of a polymer star may also be tuned by stereochemical control. Differences between isotactic samples derived from rac‐lactide and L ‐lactide are heightened by longer arms of 50 and 100 monomer units. Control of polymer isospecificity shows that a ~70% isotacticity bias is necessary to induce crystallinity and alter the thermal and degradation properties of the material. Above 70% isotacticity, the degradation properties and thermal transitions can be further tuned across a relatively wide range. This technique allows for significant tunability to the physical properties of aliphatic polyester polymer stars. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
The spontaneous hydrogel formation of a sort of biocompatible and biodegradable amphiphilic block copolymer in water was observed, and the underlying gelling mechanism was assumed. A series of ABA‐type triblock copolymers [poly(D,L ‐lactic acid‐co‐glycolic acid)‐b‐poly(ethylene glycol)‐b‐poly(D,L ‐lactic acid‐co‐glycolic acid)] and different derivatives end‐capped by small alkyl groups were synthesized, and the aqueous phase behaviors of these samples were studied. The virgin triblock copolymers and most of the derivatives exhibited a temperature‐dependent reversible sol–gel transition in water. Both the poly(D,L ‐lactic acid‐co‐glycolic acid) length and end group were found to significantly tune the gel windows in the phase diagrams, but with different behaviors. The critical micelle concentrations were much lower than the associated critical gel concentrations, and an intact micellar structure remained after gelation. A combination of various measurement techniques confirmed that the sol–gel transition with an increase in the temperature was induced not simply via the self‐assembly of amphiphilic polymer chains but also via the further hydrophobic aggregation of micelles resulting in a micelle network due to a large‐scale self‐assembly. The coarsening of the micelle network was further suggested to account for the transition from a transparent gel to an opaque gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1122–1133, 2007  相似文献   

17.
When PEG (M.W.~5000 Daltons) is conjugated to poly(l ‐alanine), the polymer aqueous solutions (<10.0 wt.%) undergo sol‐to‐gel (thermal gelation), whereas it is conjugated to poly(l ‐lactic acid), the polymer aqueous solutions (>30.0 wt.%) undergo gel‐to‐sol (gel melting) as the temperature increases. In the search for molecular origins of such a quite different phase behavior, poly(ethylene glycol)‐poly(l ‐alanine) (PEG‐PA; EG113‐A12) and poly(ethylene glycol)‐poly(l ‐lactic acid) (PEG‐PLA; EG113‐LA12) are synthesized and their aqueous solution behavior is investigated. PEG‐PAs with an α‐helical core assemble into micelles with a broad size distribution, and the dehydration of PEG drives the aggregation of the micelles, leading to thermal gelation, whereas increased molecular motion of the PLA core overwhelms the partial dehydration of PEG, thus gel melting of the PEG‐PLA aqueous solutions occurs. The core‐rigidity of micelles must be one of the key factors in determining whether a polymer aqueous solution undergoes sol‐to‐gel or gel‐to‐sol transition, as the temperature increases. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, , 52, 2434–2441  相似文献   

18.
Hydrogels based on n‐alkyl methacrylate esters (n‐AMA) of various chain lengths, acrylic acid, and acrylamide crosslinked with 4,4′‐di(methacryloylmino)azobenzene were prepared. Swelling kinetics and the mechanism of degradation in vitro of the hydrogels as well as the mutual relations between both were studied by the immersion of slabs in buffered solutions at pH 7.4. The diffusion of water into the slabs was discussed on the stress‐relaxation model of polymer chains. The results obtained agreed well with Schott's second‐order diffusion kinetics. The gels are degradable by anaerobes in the colon. The results obtained showed that the degradation of networks proceeded via a pore mechanism. The factors influencing the swelling and degradation of the gels include the degree of crosslinking, the lengths of the n‐AMA side chains, and the composition. These hydrogels have the potential for colon‐specific drug delivery. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3128–3137, 2001  相似文献   

19.
The effects of diatomite/oligomers hybrids on the phase morphology and rheology of metallocene‐catalyzed linear low‐density polyethylene (mLLDPE) were investigated. The interfacial tension between the components of the mLLDPE/hybrids influenced the dispersion of the filler and oligomer in the matrix and thus the ultimate rheological properties. Polyethylene wax (PEW) oligomer had good compatibility with the mLLDPE matrix. When a diatomite/PEW hybrid (HD‐b) was added, PEW and diatomite were dispersed separately in the mLLDPE matrix. PEW acted as a plasticizer whereas diatomite acted as a filler in mLLDPE/HD‐b. No synergetic effect was observed for HD‐b on the viscosity reduction of mLLDPE. Poly(ethylene glycol) (PEG) oligomer was incompatible with mLLDPE but had good affinity to diatomite particles. With the addition of a diatomite/PEG hybrid, a special phase morphology with an encapsulation structure with a rigid core of diatomite and a shell of PEG lubricant formed. This special phase morphology reduced the viscosity of mLLDPE significantly; that is, the addition of diatomite/PEG had a synergetic effect on the viscosity reduction of mLLDPE in comparison with the addition of PEG alone. The effect of the interfacial tension between the components of the mLLDPE/hybrid system on the rheological properties of mLLDPE was investigated. For hybrids to exhibit a synergetic effect on the viscosity reduction of the polymer matrix, they needed to fulfill the following conditions: (1) the fillers had to have good affinity to the oligomer and (2) the oligomer had to be incompatible with the polymer matrix. According to the principles, diatomite was blended with oxidized polyethylene wax (OPEW). This proved that the diatomite/OPEW hybrid exhibited a synergetic effect on the viscosity reduction of polyoxymethylene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1287–1295, 2006  相似文献   

20.
Polyethers with propargyl side chains were synthesized by the acid‐catalyzed reaction of dialdehydes 1 , alkylene bis(trimethylsilyl) ethers 2 , and allenyltrimethylsilane 4 . When ethylene glycol bis(trimethylsilyl) ether was used as 2 , only oligomer was obtained. However, the use of 2 with longer carbon chains gave the desired polyethers consisting of 1 , 2 , and 4 in the molar ratio 1:1:2 in good yields in the presence of 10 mol % triphenylmethyl perchlorate (TrClO4) at ?20 °C. This polyether was treated with organometallic reagents such as Co complex or CuCl to give a cross‐linked polymer. This polymer synthesis is unusual in that it concurrently constructs both the polymer backbone and the functional side chains from three starting compounds. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5440–5448, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号