首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A posteriori error estimators are fundamental tools for providing confidence in the numerical computation of PDEs. To date, the main theories of a posteriori estimators have been developed largely in the finite element framework, for either linear elliptic operators or non‐linear PDEs in the absence of disparate length scales. On the other hand, there is a strong interest in using grid refinement combined with Richardson extrapolation to produce CFD solutions with improved accuracy and, therefore, a posteriori error estimates. But in practice, the effective order of a numerical method often depends on space location and is not uniform, rendering the Richardson extrapolation method unreliable. We have recently introduced (Garbey, 13th International Conference on Domain Decomposition, Barcelona, 2002; 379–386; Garbey and Shyy, J. Comput. Phys. 2003; 186 :1–23) a new method which estimates the order of convergence of a computation as the solution of a least square minimization problem on the residual. This method, called least square extrapolation, introduces a framework facilitating multi‐level extrapolation, improves accuracy and provides a posteriori error estimate. This method can accommodate different grid arrangements. The goal of this paper is to investigate the power and limits of this method via incompressible Navier Stokes flow computations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The perturbation method for the reanalysis of the singular value decomposition(SVD)of general real matrices is presented in this paper.This is a simple but efficientreanalysis technique for the SVD,which is of great worth to enhance computationalefficiency of the iterative analysis problems that require matrix singular valuedecomposition repeatedly.The asymptotic estimate formulas for the singular values and thecorresponding left and right singular vectors up to second-order perturbation componentsare derived.At the end of the paper the way to extend the perturbation method to the case ofgeneral complex matrices is advanced.  相似文献   

3.
提出了一种区域分解法来分析不同边界条件下环肋骨圆柱壳-圆锥壳组合结构的振动特性.首先把组合壳体分解为自由的圆柱壳、圆锥壳段;视环肋骨为离散元件,根据肋骨与圆柱壳段之间的变形协调条件,将肋骨的动能和应变能附加于圆柱壳段能量泛函中.然后基于分区广义变分和最小二乘加权残值法将所有分区界面的位移协调方程引入到组合壳体的能量泛函中.圆柱壳段、圆锥壳段位移变量的周向和轴向分量分别采用Fourier级数和Chebyshev多项式展开.以自由-自由、自由-固支和固支-固支边界条件的环肋骨组合壳体为例,采用区域分解法分析了其自由振动及在不同激励下的振动响应.通过与有限元软件ANSYS结果进行对比,发现两种方法计算结果非常吻合,验证了区域分解方法的计算精度和高效性.  相似文献   

4.
This paper deals with the numerical method for the system of reaction-diffusionequations with a small parameter.It is difficult to solve the problems of this kindnumerically because of the boundary layer efect.Besed on singular perturbed theory andGreens’function,we have established the difference scheme that is suited for the solution tothe problems.It e introduce an idea of feasilbe equidistant degree a here.And this provesthat if a≥2.the scheme converges in l,m norm with speed O.h \t)uniformly.  相似文献   

5.
AMETHODFORSOLVINGTHEDYNAMICSOFMULTIBODYSYSTEMSWITHRHEONOMICANDNONHOLONOMICCONSTRAINTS¥ShuiXiaoping(水小平)ZhangYongfa(张永发)(Depar...  相似文献   

6.
This paper presents a global Galerkin spectral method for solving the incompressible Navier–Stokes equations in three‐dimensional bounded domains. The method is based on helical‐wave decomposition (HWD), which uses the vector eigenfunctions of the curl operator as orthogonal basis functions. We shall first review the general theory of HWD in an arbitrary simply connected domain, along with some new developments. We then employ the HWD to construct a Galerkin spectral method. The current method innovates the existing HWD‐based spectral method by (a) adding a series of auxiliary fields to the HWD of the velocity field to fulfill the no‐slip boundary condition and to settle the convergence problem of the HWD of the curl fields, and (b) providing a pseudo‐spectral method that utilizes a fast spherical harmonic transform algorithm and Gaussian quadrature to calculate the nonlinear term in the Navier–Stokes equations. The auxiliary fields are uniquely determined by solving the Stokes and Stokes‐like equations under adequate boundary conditions. The implementation of the method under the spherical geometry is presented in detail. Several numerical examples are provided to validate the proposed method. The method can be easily extended to other domains once the helical‐wave bases, which depend only on the geometry of the domains, are available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
针对虚边界元法,引入快速多极展开和广义极小残值法(GMRES)的思想,以形成快速多极虚边界元法的求解思想,并将此方法用于含圆孔薄板有效弹性模量的模拟分析.由于本文方法采用了"源点"多极展开和"场点"局部展开的组合处理方案,从而使得原问题方程组求解的计算耗时量和储存量降至与所求问题的计算自由度数成线性比例.本文工作的研究目的在于:提高虚边界元法在普通台式机上的运算能力和拓宽虚边界元法对大规模复杂问题的求解(或数值模拟).文中给出了均布圆孔的正方形薄板和之字形分布圆孔薄板二个算例,以验证该方法的可行性,计算精度和计算效率.  相似文献   

8.
The method of boundary layer with multiple scales and computer algebra were applied to study the asymptotic behavior of solution of boundary value problems for a class of system of nonlinear differential equations. The asymptotic expansions of solution were constructed. The remainders were estimated. And an example was analysed. It provides a new foreground for the application of the method of boundary layer with multiple scales. Contributed by Jiang Fu-ru, Original Member of Editorial Committe, AMM Biography: Xie La-bing (1976∼); Jiang Fu-ru(1927∼)  相似文献   

9.
IntroductionConsiderthesystemofpartialdifferentialalgebraicequations (PDAEs) :Σ : Pi(y1,y2 ,… ,yn) =0   (i =1,2 ,… ,r) ,wherethecoefficientsareinthedifferentialfieldKwithcharacteristiczero .TheimportantquestionishowtosolvethisPDAEsinthetheoryofpartialdifferentialequa…  相似文献   

10.
Someengineeringproblemscanbeexpressedbysuchasystemoflinearnon_homogeneousdifferentialequationsasL1[u1(q)]=F1(q),L2[u2(q)]=F2(q)+f2[u1(q)],…Ln[un(q)]=Fn(q)+fn[u1(q),u2(q),…,un-1(q)],(1)andtheirinitialandboundaryconditions,whereqisthesetofallargumentsw…  相似文献   

11.
纯幂律全塑性罚函数有限元   总被引:4,自引:2,他引:2  
从非线性连续介质力学出发导出一种新的形式较简单的纯幂律体积不可压缩一构方程,形成纯幂律罚函数有限元。提出迭代解分析方法论羰应变条件下罚函数方法有效性。再结合计算结果讨论不同条件下罚因子对应在力应变场的影响并对迭代特性进行分析。结果发现纯幂律全塑性罚函数有限元存在;1)迭代收敛速度随害虫律指数增加而减慢,并且εe〉ε0时减幅很大;εe〈ε0时不明显。2)应力应变的计算精度随幂律指数变化而变化,当ε〉  相似文献   

12.
IntroductionIn 1 7thcenturyIsaacNewton[1]gavesuchabinomialexpressionforfractionalandnegativeexponents(1 +t) α,i.e.,(1 +t) α =1 + +∞k=1α(α-1 ) (α-2 )… (α -k+ 1 )k !tk   (α≠ 0 ,1 ,2 ,… ) ,(1 )whoseconvergenceradiusisone.Furthermore ,theclassicalTaylorseries (seeRef.[2 ] )limm→+∞ mk=0f(k) (z0 )k !(z-z0 ) k (2 )ofacomplexfunctionf(z)atz=z0 isvalidmostlyinarestrictedconvergenceregion|z-z0 |相似文献   

13.
The onset of thermal convection in a non-rotating spherical shell is investigated using linear theory. The Tau-Chebyshev spectral method is used to integrate the linearized equations. We investigate the onset of thermal convection by considering two cases of the radial gravitational field (i) a local acceleration, acting radially inward, that is proportional to the distance from the center r, and (ii) a radial gravitational central force that is proportional to rn. The former case has been widely analyzed in the literature, because it constitutes a simplified model that is usually used, in astrophysics and geophysics, and is studied here to validate the numerical method. The latter case was analyzed since the case n = 5 has been experimentally realized (by means of the dielectrophoretic effect) under microgravity condition, in the experimental container called GeoFlow, inside the International Space Station. Our study is aimed to clarify the role of (i) a radially inward central force (either proportional to r or to rn), (ii) a base conductive temperature distribution provided by either a uniform heat source or an imposed temperature difference between outer and inner spheres, and (iii) the aspect ratio η (ratio of the radii of the inner and outer spheres), on the critical Rayleigh number. In all cases the surface of the spheres has been assumed to be rigid. The results obtained with the linear theory based on the Tau-Chebyshev spectral method are compared with those of the integration of the full non-linear equations solved by using the spectral element method. By using the Tau-Chebyshev method, we were able to explore new cases that have not been previously reported in the literature.  相似文献   

14.
In this paper,a weighted residual method for the elastic-plastic analysis near a crack tip is systematically given by taking the model of power-law hardening under plane strain condition as a sample.The elastic-plastic solutions of the crack tip field and an approach based on the superposition of the nonlinear finite element method on the complete solution in the whole crack body field,to calculate the plastic stress intensity factors,are also developed.Therefore,a complete analysis based on the calculation both for the crack tip field and for the whole crack body field is provided.  相似文献   

15.
In this paper, we introduce and test the enhanced stability recovery (ESR) scheme. It is a robust and compact approach to the computation of diffusive fluxes in the framework of discontinuous Galerkin methods. The scheme is characterized by a new recovery basis and a new procedure for the weak imposition of Dirichlet boundary conditions. These features make the method flexible and robust, even in the presence of highly distorted meshes. The implementation is simplified with respect to the original recovery scheme (RDG1x). Furthermore, thanks to the proposed approach, a robust implementation of p‐adaptive algorithms is possible. Numerical tests on unstructured grids show a convergence rate equal to p + 1, where p is the reconstruction order. Comparisons are shown with the original recovery scheme RDG1x and the widely used BR2 method. Results show a significantly larger stability region for the proposed discretization when explicit Runge–Kutta time integration is employed. Interestingly, this advantage grows quickly when the reconstruction order is increased. The proposed procedure for the weak imposition of Dirichlet boundary conditions does not need the introduction of ghost cells, and it is truly local because it does not require data exchange with other elements. It can be easily used with curvilinear wall elements. Several test cases are considered. They include some benchmark tests with the heat equation and compressible Navier–Stokes equations, with test cases designed also to evaluate the behaviour of the scheme with very stretched elements and separated flows. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A finite element solution of the two-dimensional incompressible Navier–Stokes equations has been developed. The present method is a modified velocity correction approach. First an intermediate velocity is calculated, and then this is corrected by the pressure gradient which is the solution of a Poisson equation derived from the continuity equation. The novelty, in this paper, is that a second-order Runge–Kutta method for time integration has been used. Discretization in space is carried out by the Galerkin weighted residual method. The solution is in terms of primitive variables, which are approximated by polynomial basis functions defined on three-noded, isoparametric triangular elements. To demonstrate the present method, two examples are provided. Results from the first example, the driven cavity flow problem, are compared with previous works. Results from the second example, uniform flow past a cylinder, are compared with experimental data.  相似文献   

17.
The conventional volume-of-fluid method has the potential to deal with large free surface deformation on a fixed Cartesian grid. However, when free-surface flows are within or over complex geometries of industrial relevance, such as free-surface flows over offshore oil platforms, it is advantageous to extend the method originally written in Cartesian forms into non-Cartesian forms. In the present study, an algorithm similar to the algorithm described by Rudman in 1997 is proposed for use with curvilinear co-ordinates. This extension results in the ability to model complex geometries which could not be modelled using the original algorithm. Excellent agreement between the solutions obtained on both orthogonal and non-orthogonal meshes is achieved, although in general the L 1 error, based on the exact solution, on the non-orthogonal mesh is slightly higher than that on the orthogonal mesh. The extended fluid flow solving capacity of the present method is demonstrated through its application to a non-orthogonal Rayleigh–Taylor instability problem.  相似文献   

18.
A spectral collocation method is developed for solving the three‐dimensional transient Navier–Stokes equations in cylindrical coordinate system. The Chebyshev–Fourier spectral collocation method is used for spatial approximation. A second‐order semi‐implicit scheme with explicit treatment of the pressure and implicit treatment of the viscous term is used for the time discretization. The pressure Poisson equation enforces the incompressibility constraint for the velocity field, and the pressure is solved through the pressure Poisson equation with a Neumann boundary condition. We demonstrate by numerical results that this scheme is stable under the standard Courant–Friedrichs–Lewy (CFL) condition, and is second‐order accurate in time for the velocity, pressure, and divergence. Further, we develop three accurate, stable, and efficient solvers based on this algorithm by selecting different collocation points in r‐, ? ‐, and z‐directions. Additionally, we compare two sets of collocation points used to avoid the axis, and the numerical results indicate that using the Chebyshev Gauss–Radau points in radial direction to avoid the axis is more practical for solving our problem, and its main advantage is to save the CPU time compared with using the Chebyshev Gauss–Lobatto points in radial direction to avoid the axis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A space and time third‐order discontinuous Galerkin method based on a Hermite weighted essentially non‐oscillatory reconstruction is presented for the unsteady compressible Euler and Navier–Stokes equations. At each time step, a lower‐upper symmetric Gauss–Seidel preconditioned generalized minimal residual solver is used to solve the systems of linear equations arising from an explicit first stage, single diagonal coefficient, diagonally implicit Runge–Kutta time integration scheme. The performance of the developed method is assessed through a variety of unsteady flow problems. Numerical results indicate that this method is able to deliver the designed third‐order accuracy of convergence in both space and time, while requiring remarkably less storage than the standard third‐order discontinous Galerkin methods, and less computing time than the lower‐order discontinous Galerkin methods to achieve the same level of temporal accuracy for computing unsteady flow problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this article, we present a higher‐order finite volume method with a ‘Modified Implicit Pressure Explicit Saturation’ (MIMPES) formulation to model the 2D incompressible and immiscible two‐phase flow of oil and water in heterogeneous and anisotropic porous media. We used a median‐dual vertex‐centered finite volume method with an edge‐based data structure to discretize both, the elliptic pressure and the hyperbolic saturation equations. In the classical IMPES approach, first, the pressure equation is solved implicitly from an initial saturation distribution; then, the velocity field is computed explicitly from the pressure field, and finally, the saturation equation is solved explicitly. This saturation field is then used to re‐compute the pressure field, and the process follows until the end of the simulation is reached. Because of the explicit solution of the saturation equation, severe time restrictions are imposed on the simulation. In order to circumvent this problem, an edge‐based implementation of the MIMPES method of Hurtado and co‐workers was developed. In the MIMPES approach, the pressure equation is solved, and the velocity field is computed less frequently than the saturation field, using the fact that, usually, the velocity field varies slowly throughout the simulation. The solution of the pressure equation is performed using a modification of Crumpton's two‐step approach, which was designed to handle material discontinuity properly. The saturation equation is solved explicitly using an edge‐based implementation of a modified second‐order monotonic upstream scheme for conservation laws type method. Some examples are presented in order to validate the proposed formulation. Our results match quite well with others found in literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号