首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fully non‐linear free‐surface flow over a semi‐circular bottom obstruction was studied numerically in two dimensions using a mixed Eulerian–Lagrangian formulation. The problem was solved in the time domain that allows the prediction of a number of transient phenomena, such as the generation of upstream advancing solitary waves, as well as the simulation of wave breaking. A parametric study was performed for a range of values of the depth‐based Froude number up to 2.5 and non‐dimensional obstacle heights, α up to 0.9. When wave breaking does not occur, three distinct flow regimes were identified: subcritical, transcritical and supercritical. When breaking occurs it may be of any type: spilling, plunging or surging. In addition, for values of the Froude number close to 1, the upstream solitary waves break. A systematic study was undertaken to define the boundaries of each type of breaking and non‐breaking pattern and to determine the drag and lift coefficients, free‐surface profile characteristics and transient behavior. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a finite element solution algorithm for three‐dimensional isothermal turbulent flows for mold‐filling applications. The problems of interest present unusual challenges for both the physical modelling and the solution algorithm. High‐Reynolds number transient turbulent flows with free surfaces have to be computed on complex three‐dimensional geometries. In this work, a segregated algorithm is used to solve the Navier–Stokes, turbulence and front‐tracking equations. The streamline–upwind/Petrov–Galerkin method is used to obtain stable solutions to convection‐dominated problems. Turbulence is modelled using either a one‐equation turbulence model or the κ–ε two‐equation model with wall functions. Turbulence equations are solved for the natural logarithm of the turbulence variables. The change of dependent variables allows for a robust solution algorithm and good predictions even on coarse meshes. This is very important in the case of large three‐dimensional applications for which highly refined meshes result in untreatable large numbers of elements. The position of the flow front in the mold cavity is computed using a level set approach. Finally, equations are integrated in time using an implicit Euler scheme. The methodology presents the robustness and cost effectiveness needed to tackle complex industrial applications. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
This paper deals with the numerical discretization of two‐dimensional depth‐averaged models with porosity. The equations solved by these models are similar to the classic shallow water equations, but include additional terms to account for the effect of small‐scale impervious obstructions which are not resolved by the numerical mesh because their size is smaller or similar to the average mesh size. These small‐scale obstructions diminish the available storage volume on a given region, reduce the effective cross section for the water to flow, and increase the head losses due to additional drag forces and turbulence. In shallow water models with porosity these effects are modelled introducing an effective porosity parameter in the mass and momentum conservation equations, and including an additional drag source term in the momentum equations. This paper presents and compares two different numerical discretizations for the two‐dimensional shallow water equations with porosity, both of them are high‐order schemes. The numerical schemes proposed are well‐balanced, in the sense that they preserve naturally the exact hydrostatic solution without the need of high‐order corrections in the source terms. At the same time they are able to deal accurately with regions of zero porosity, where the water cannot flow. Several numerical test cases are used in order to verify the properties of the discretization schemes proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A low‐dimensional spectral method is used to solve the transient axisymmetric free surface flow inside thin cavities of arbitrary shape. The flow field is obtained on the basis of the lubrication equations, which are expanded in terms of orthonormal functions over the cavity gap. The formulation accounts for nonlinearities stemming from inertia and front location. The work is of close relevance to the filling stage during die casting, and injection molding, or the flow inside annular (extrusion) dies. Both flows under an imposed flow rate, and an imposed pressure at the cavity entrance are examined. The influence of inertia, aspect ratio, gravity, and wall geometry on the evolution of the front, flow rate, and pressure is assessed particularly in the early stage of flow, when a temporal behavior of the ‘boundary‐layer’ type develops. The multiple‐scale method is applied to obtain an approximate solution at small Reynolds number, Re. Comparison with the exact (numerical) solution indicates a wide range of validity for the multiple‐scale approach, including the moderately small Re range. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
A two-dimensional potential flow is employed to derive the front condition of the gravity current. The derivation starts from the balance between the static pressure of the gravity current and the form drag imposed on the gravity current by the ambient fluid. After employing Bernoullis equation along the interface of the gravity current near the head, we end up with a front condition that is in better agreement with experiment than previous theoretical models. This condition is a function of the density ratio between current and ambient fluids, which was different from previous theoretical models, while it has been widely used in experimental studies. The present front condition suggests that the form drag may account for a significant part of the resistance force applied on the current head.  相似文献   

6.
We propose a new two‐dimensional numerical scheme to solve the Saint‐Venant system of shallow water equations in the presence of partially flooded cells. Our method is well balanced, positivity preserving, and handles dry states. The latter is ensured by using the draining time step technique in the time integration process, which guarantees non‐negative water depths. Unlike previous schemes, our technique does not generate high velocities at the dry/wet boundaries, which are responsible for small time step sizes and slow simulation runs. We prove that the new scheme preserves ‘lake at rest’ steady states and guarantees the positivity of the computed fluid depth in the partially flooded cells. We test the new scheme, along with another recent scheme from the literature, against the analytical solution for a parabolic basin and show the improved simulation performance of the new scheme for two real‐world scenarios. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This work describes a methodology to simulate free surface incompressible multiphase flows. This novel methodology allows the simulation of multiphase flows with an arbitrary number of phases, each of them having different densities and viscosities. Surface and interfacial tension effects are also included. The numerical technique is based on the GENSMAC front‐tracking method. The velocity field is computed using a finite‐difference discretization of a modification of the Navier–Stokes equations. These equations together with the continuity equation are solved for the two‐dimensional multiphase flows, with different densities and viscosities in the different phases. The governing equations are solved on a regular Eulerian grid, and a Lagrangian mesh is employed to track free surfaces and interfaces. The method is validated by comparing numerical with analytic results for a number of simple problems; it was also employed to simulate complex problems for which no analytic solutions are available. The method presented in this paper has been shown to be robust and computationally efficient. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this article, a masked bubble strategy is proposed using the front‐tracking method when simulation of multi‐density bubbles to reduce remarkably the computational cost from both the RAM usage and the number of computations at each time step comparing with the regular method. In the masked bubble strategy, instead of using full domain to update the properties at each time step, each bubble is considered as enclosed in the smallest box required to compute the properties based on the Peskin's function, which needs at least two full mesh sizes from both sides of the interface of each bubble in any directions. To show the performance of the masked bubble strategy in the front‐tracking method, we study the multi‐density bubbles motion in a curved duct flow induced by a pressure gradient in the absence of gravity. To solve the density Poisson equation, the parallel direct solver scheme is tested. The comparison of numerical simulations at the same conditions indicates that the parallel direct solver scheme under the masked bubble strategy considerably reduces the computational time and RAM usage relative to the regular full‐domain method, providing using simulations on finer grid resolutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper combines the pseudo‐compressibility procedure, the preconditioning technique for accelerating the time marching for stiff hyperbolic equations, and high‐order accurate central compact scheme to establish the code for efficiently and accurately solving incompressible flows numerically based on the finite difference discretization. The spatial scheme consists of the sixth‐order compact scheme and 10th‐order numerical filter operator for guaranteeing computational stability. The preconditioned pseudo‐compressible Navier–Stokes equations are marched temporally using the implicit lower–upper symmetric Gauss–Seidel time integration method, and the time accuracy is improved by the dual‐time step method for the unsteady problems. The efficiency and reliability of the present procedure are demonstrated by applications to Taylor decaying vortices phenomena, double periodic shear layer rolling‐up problem, laminar flow over a flat plate, low Reynolds number unsteady flow around a circular cylinder at Re = 200, high Reynolds number turbulence flow past the S809 airfoil, and the three‐dimensional flows through two 90°curved ducts of square and circular cross sections, respectively. It is found that the numerical results of the present algorithm are in good agreement with theoretical solutions or experimental data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
We consider numerical solutions of the two‐dimensional non‐linear shallow water equations with a bed slope source term. These equations are well‐suited for the study of many geophysical phenomena, including coastal engineering where wetting and drying processes are commonly observed. To accurately describe the evolution of moving shorelines over strongly varying topography, we first investigate two well‐balanced methods of Godunov‐type, relying on the resolution of non‐homogeneous Riemann problems. But even if these schemes were previously proved to be efficient in many simulations involving occurrences of dry zones, they fail to compute accurately moving shorelines. From this, we investigate a new model, called SURF_WB, especially designed for the simulation of wave transformations over strongly varying topography. This model relies on a recent reconstruction method for the treatment of the bed‐slope source term and is able to handle strong variations of topography and to preserve the steady states at rest. In addition, the use of the recent VFRoe‐ncv Riemann solver leads to a robust treatment of wetting and drying phenomena. An adapted ‘second order’ reconstruction generates accurate bore‐capturing abilities.This scheme is validated against several analytical solutions, involving varying topography, time dependent moving shorelines and convergences toward steady states. This model should have an impact in the prediction of 2D moving shorelines over strongly irregular topography. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a numerical study of a two‐dimensional time‐dependent flow around a cylinder. Its main objective is to provide accurate reference values for the maximal drag and lift coefficient at the cylinder and for the pressure difference between the front and the back of the cylinder at the final time. In addition, the accuracy of these values obtained with different time stepping schemes and different finite element methods is studied. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents two‐dimensional and unsteady RANS computations of time dependent, periodic, turbulent flow around a square block. Two turbulence models are used: the Launder–Sharma low‐Reynolds number k–ε model and a non‐linear extension sensitive to the anisotropy of turbulence. The Reynolds number based on the free stream velocity and obstacle side is Re=2.2×104. The present numerical results have been obtained using a finite volume code that solves the governing equations in a vertical plane, located at the lateral mid‐point of the channel. The pressure field is obtained with the SIMPLE algorithm. A bounded version of the third‐order QUICK scheme is used for the convective terms. Comparisons of the numerical results with the experimental data indicate that a preliminary steady solution of the governing equations using the linear k–ε does not lead to correct flow field predictions in the wake region downstream of the square cylinder. Consequently, the time derivatives of dependent variables are included in the transport equations and are discretized using the second‐order Crank–Nicolson scheme. The unsteady computations using the linear and non‐linear k–ε models significantly improve the velocity field predictions. However, the linear k–ε shows a number of predictive deficiencies, even in unsteady flow computations, especially in the prediction of the turbulence field. The introduction of a non‐linear k–ε model brings the two‐dimensional unsteady predictions of the time‐averaged velocity and turbulence fields and also the predicted values of the global parameters such as the Strouhal number and the drag coefficient to close agreement with the data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, sixth‐order monotonicity‐preserving optimized scheme (OMP6) for the numerical solution of conservation laws is developed on the basis of the dispersion and dissipation optimization and monotonicity‐preserving technique. The nonlinear spectral analysis method is developed and is used for the purpose of minimizing the dispersion errors and controlling the dissipation errors. The new scheme (OMP6) is simple in expression and is easy for use in CFD codes. The suitability and accuracy of this new scheme have been tested through a set of one‐dimensional, two‐dimensional, and three‐dimensional tests, including the one‐dimensional Shu–Osher problem, the two‐dimensional double Mach reflection, and the Rayleigh–Taylor instability problem, and the three‐dimensional direct numerical simulation of decaying compressible isotropic turbulence. All numerical tests show that the new scheme has robust shock capturing capability and high resolution for the small‐scale waves due to fewer numerical dispersion and dissipation errors. Moreover, the new scheme has higher computational efficiency than the well‐used WENO schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This paper applies the higher‐order bounded numerical scheme Weighted Average Coefficients Ensuring Boundedness (WACEB) to simulate two‐ and three‐dimensional turbulent flows. In the scheme, a weighted average formulation is used for interpolating the variables at cell faces and the weighted average coefficients are determined from a normalized variable formulation and total variation diminishing (TVD) constraints to ensure the boundedness of the solution. The scheme is applied to two turbulent flow problems: (1) two‐dimensional turbulent flow around a blunt plate; and (2) three‐dimensional turbulent flow inside a mildly curved U‐bend. In the present study, turbulence is evaluated by using a low‐Reynolds number version of the k–ω model. For the flow simulation, the QUICK scheme is applied to the momentum equations while either the WACEB scheme (Method 1) or the UPWIND scheme (Method 2) is used for the turbulence equations. The present study shows that the WACEB scheme has at least second‐order accuracy while ensuring boundedness of the solutions. The present numerical study for a pure convection problem shows that the ‘TVD’ slope ranges from 2 to 4. For the turbulent recirculating flow, two different mixed procedures (Method 1 and Method 2) produce a substantial difference for the mean velocities as well as for the turbulence kinetic energy. Method 1 predicts better results than Method 2 does, comparing the analytical solution and the experimental data. For the turbulent flow inside the mildly curved U‐bend, although the predictions of velocity distributions with two procedures are very close, a noticeable difference of turbulence kinetic energy is exhibited. It is noticed that the discrepancy exists between numerical results and the experimental data. The reason is the limit of the two‐equation turbulence model to such complex turbulent flows with extra strain‐rates. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
A Reynolds stress model for the numerical simulation of uniform 3D turbulent open‐channel flows is described. The finite volume method is used for the numerical solution of the flow equations and transport equations of the Reynolds stress components. The overall solution strategy is the SIMPLER algorithm, and the power‐law scheme is used to discretize the convection and diffusion terms in the governing equations. The developed model is applied to a flow at a Reynolds number of 77000 in a rectangular channel with a width to depth ratio of 2. The simulated mean flow and turbulence structures are compared with measured and computed data from the literature. The computed flow vectors in the plane normal to the streamwise direction show a small vortex, called inner secondary currents, located at the juncture of the sidewall and the free surface as well as the free surface and bottom vortices. This small vortex causes a significant increase in the wall shear stress in the vicinity of the free surface. A budget analysis of the streamwise vorticity is carried out. It is found that both production terms by anisotropy of Reynolds normal stress and by Reynolds shear stress contribute to the generation of secondary currents. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
A numerical model has been developed for simulating density‐stratified flow in domains with irregular but simple topography. The model was designed for simulating strong interactions between internal gravity waves and topography, e.g. exchange flows in contracting channels, tidally or convectively driven flow over two‐dimensional sills or waves propagating onto a shoaling bed. The model is based on the non‐hydrostatic, Boussinesq equations of motion for a continuously stratified fluid in a rotating frame, subject to user‐configurable boundary conditions. An orthogonal boundary fitting co‐ordinate system is used for the numerical computations, which rely on a fourth‐order compact differentiation scheme, a third‐order explicit time stepping and a multi‐grid based pressure projection algorithm. The numerical techniques are described and a suite of validation studies are presented. The validation studies include a pointwise comparison of numerical simulations with both analytical solutions and laboratory measurements of non‐linear solitary wave propagation. Simulation results for flows lacking analytical or laboratory data are analysed a posteriori to demonstrate satisfaction of the potential energy balance. Computational results are compared with two‐layer hydraulic predictions in the case of exchange flow through a contracting channel. Finally, a simulation of circulation driven by spatially non‐uniform surface buoyancy flux in an irregular basin is discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is concerned with the development of a high‐order upwind conservative discretization method for the simulation of flows of a Newtonian fluid in two dimensions. The fluid‐flow domain is discretized using a Cartesian grid from which non‐overlapping rectangular control volumes are formed. Line integrals arising from the integration of the diffusion and convection terms over control volumes are evaluated using the middle‐point rule. One‐dimensional integrated radial basis function schemes using the multiquadric basis function are employed to represent the variations of the field variables along the grid lines. The convection term is effectively treated using an upwind scheme with the deferred‐correction strategy. Several highly non‐linear test problems governed by the Burgers and the Navier–Stokes equations are simulated, which show that the proposed technique is stable, accurate and converges well. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A new finite element method is presented to solve one‐dimensional depth‐integrated equations for fully non‐linear and weakly dispersive waves. For spatial integration, the Petrov–Galerkin weighted residual method is used. The weak forms of the governing equations are arranged in such a way that the shape functions can be piecewise linear, while the weighting functions are piecewise cubic with C2‐continuity. For the time integration an implicit predictor–corrector iterative scheme is employed. Within the framework of linear theory, the accuracy of the scheme is discussed by considering the truncation error at a node. The leading truncation error is fourth‐order in terms of element size. Numerical stability of the scheme is also investigated. If the Courant number is less than 0.5, the scheme is unconditionally stable. By increasing the number of iterations and/or decreasing the element size, the stability characteristics are improved significantly. Both Dirichlet boundary condition (for incident waves) and Neumann boundary condition (for a reflecting wall) are implemented. Several examples are presented to demonstrate the range of applicabilities and the accuracy of the model. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
This paper describes the finite difference numerical procedure for solving velocity–vorticity form of the Navier–Stokes equations in three dimensions. The velocity Poisson equations are made parabolic using the false‐transient technique and are solved along with the vorticity transport equations. The parabolic velocity Poisson equations are advanced in time using the alternating direction implicit (ADI) procedure and are solved along with the continuity equation for velocities, thus ensuring a divergence‐free velocity field. The vorticity transport equations in conservative form are solved using the second‐order accurate Adams–Bashforth central difference scheme in order to assure divergence‐free vorticity field in three dimensions. The velocity and vorticity Cartesian components are discretized using a central difference scheme on a staggered grid for accuracy reasons. The application of the ADI procedure for the parabolic velocity Poisson equations along with the continuity equation results in diagonally dominant tri‐diagonal matrix equations. Thus the explicit method for the vorticity equations and the tri‐diagonal matrix algorithm for the Poisson equations combine to give a simplified numerical scheme for solving three‐dimensional problems, which otherwise requires enormous computational effort. For three‐dimensional‐driven cavity flow predictions, the present method is found to be efficient and accurate for the Reynolds number range 100?Re?2000. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
For two‐phase flow models, upwind schemes are most often difficult do derive, and expensive to use. Centred schemes, on the other hand, are simple, but more dissipative. The recently proposed multi‐stage (MUSTA ) method is aimed at coming close to the accuracy of upwind schemes while retaining the simplicity of centred schemes. So far, the MUSTA approach has been shown to work well for the Euler equations of inviscid, compressible single‐phase flow. In this work, we explore the MUSTA scheme for a more complex system of equations: the drift‐flux model, which describes one‐dimensional two‐phase flow where the motions of the phases are strongly coupled. As the number of stages is increased, the results of the MUSTA scheme approach those of the Roe method. The good results of the MUSTA scheme are dependent on the use of a large‐enough local grid. Hence, the main benefit of the MUSTA scheme is its simplicity, rather than CPU ‐time savings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号