共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of CCl3 with O(3P) and O2 and those of CCl3O2 with NO have been studied at 295 K using discharge flow methods with helium as the bath gas. The rate coefficient for the reaction of CCl3 with O was found to be (4.2 ± 0.6) × 10?11 cm3/s and that for CCl3O2 with NO was (18.6 ± 2.8) × 10?12 cm3/s with both coefficients independent of [He]. For reaction between CCl3 and O2 the rate coefficient was found to increase from 1.51 7times; 10?14 cm3/s to 7.88 × 10?14 cm3/s as the [He] increased from 3.5 × 1016 cm?3 to 2.7 × 1017 cm?3. There was no evidence for a direct two-body reaction, and it is concluded that the only product of this reaction is CCl3O2. Examination of these results for CCl3 + O2 in terms of current simplified falloff treatment suggests that the high-pressure limit for this reaction is ~ 2.5 × 10?12 cm3/s, which may be compared with a direct measurement of the high-pressure limit of 5 × 10?12 cm3/s. A value of (5.8 ± 0.6) × 10?31 cm6/s has been obtained for k0, the coefficient in the low-pressure region. This value is compared with corresponding values found earlier for the (CH3, O2) and (CF3, O2) systems and with estimates based on unimolecular rate theory. 相似文献
2.
Using Fourier transform infrared spectroscopy, the ethene yield from the reaction of C2H5 radicals with O2 has been determined to be 1.50 ± 0.09%, 0.85 ± 0.11%, and <0.1% at total pressures of 25, 50, and 700 torr, respectively. Additionally, the rate constant of the reaction of C2H5 radicals with molecular chlorine was measured relative to that with molecular oxygen. (1) A ratio k6/k7 = 1.99 ± 0.14 was measured at 700 torr total pressure which, together with the literature value of k7 = 4.4 × 10?12 cm3 molecule?1s?1, yields k6 = (8.8 ± 0.6) × 10?12 cm3 molecule?1s?1. Quoted errors represent 2σ. These results are discussed with respect to previous kinetic and mechanistic studies of C2H5 radicals. 相似文献
3.
Yuki Ninomiya Satoshi Hashimoto Masahiro Kawasaki Timothy J. Wallington 《国际化学动力学杂志》2000,32(3):125-130
Cavity ring‐down (CRD) techniques were used to study the kinetics of the reaction of Br atoms with ozone in 1–205 Torr of either N2 or O2, diluent at 298 K. By monitoring the rate of formation of BrO radicals, a value of k(Br + O3) = (1.2 ± 0.1) × 10−12 cm3 molecule−1 s−1 was established that was independent of the nature and pressure of diluent gas. The rate of relaxation of vibrationally excited BrO radicals by collisions with N2 and O2 was measured; k(BrO(v) + O2 → BrO(v − 1) + O2) = (5.7 ± 0.3) × 10−13 and k(BrO(v) + N2 → BrO(v − 1) + N2) = (1.5 ± 0.2) × 10−13 cm3 molecule−1 s−1. The increased efficiency of O2 compared with N2 as a relaxing agent for vibrationally excited BrO radicals is ascribed to the formation of a transient BrO–O2 complex. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 125–130, 2000 相似文献
4.
Azulene, which is isomeric with naphthalene, was studied to determine whether it behaves like a polycyclic aromatic hydrocarbon or an alkene in its gas-phase reactions with OH and NO3 radicals and O3. Using relative rate methods, rate constants for the reactions of azulene with OH and NO3 radicals and O3 of (2.73 ± 0.56) × 10?10 cm3 molecule?1 s?1, (3.9) × 10?10 cm3 molecule?1 s?1, and <7 × 10?17 cm3 molecule?1 s?1, respectively, were obtained at 298 ± 2 K. The observation that the NO3 radical reaction did not involve NO2 in the rate determining step indicates that azulene behaves more like an alkene than a polycyclic aromatic hydrocarbon in this reaction. No conclusive evidence for the formation of nitroazulene(s) from either the OH or NO3 radical-initiated reaction of azulene (in the presence of NOx) was obtained. 相似文献
5.
The reaction of C2H5O2 with NO in helium carrier gas at 295 K with [He] = 1.6 × 1017 cm?3 has been studied using a gas flow reactor sampled by a mass spectrometer. Because no parent molecular ion or suitable fragment ion produced by C2H5O2 could be detected, the reaction was followed by measuring the formation of NO2. In so doing, account had to be taken of the small amount of HO2 known to be present in the reaction mixture, which also leads to NO2 on reaction with NO. The rate coefficient for the total reaction of C2H5O2 with NO was found to be (8.9 ± 3.0) × 10?12 cm3/s, and the path which produces NO2 was found to account for at least 80% of all C2H5O2. 相似文献
6.
The reactions of N2O with NO and OH radicals have been studied using ab initio molecular orbital theory. The energetics and molecular parameters, calculated by the modified Gaussian-2 method (G2M), have been used to compute the reaction rate constants on the basis of the TST and RRKM theories. The reaction N2O + NO → N2 + NO2 (1) was found to proceed by direct oxygen abstraction and to have a barrier of 47 kcal/mol. The theoretical rate constant, k1 = 8.74 × 10−19 × T2.23 exp (−23,292/T) cm3 molecule−1 s−1, is in close agreement with earlier estimates. The reaction of N2O with OH at low temperatures and atmospheric pressure is slow and dominated by association, resulting in the HONNO intermediate. The calculated rate constant for 300 K ≤ T ≤ 500 K is lower by a few orders than the upper limits previously reported in the literature. At temperatures higher than 1000 K, the N2O + OH reaction is dominated by the N2 + O2H channel, while the HNO + NO channel is slower by 2–3 orders of magnitude. The calculated rate constants at the temperature range of 1000–5000 K for N2O + OH → N2 + O2H (2A) and N2O + OH → HNO + NO (2B) are fitted by the following expressions: in units of cm3 molecule −1s−1. Both N2O + NO and N2O + OH reactions are confirmed to enhance, albeit inefficiently, the N2O decomposition by reducing its activation energy. © 1996 John Wiley & Sons, Inc. 相似文献
7.
The kinetics of the gas-phase reactions of naphthalene, 2-methylnaphthalene, and 2,3-dimethylnaphthalene with O3 and with OH radicals have been studied at 295 ± 1 K in one atmosphere of air. Upper limit rate constants for the O3 reactions of <3 × 10?19, <4 × 10?19, and <4 × 10?19 cm3 molecule?1 s?1 were obtained for naphthalene, 2-methylnaphthalene, and 2,3-dimethylnaphthalene, respectively. For the OH radical reactions, rate constants of (in units of 10?11 cm3 molecule?1 s?1) 2.59 ± 0.24, 5.23 ± 0.42, and 7.68 ± 0.48 were determined for naphthalene, 2±methylnaphthalene, and 2,3-dimethylnaphthalene, respectively. These data show that under atmospheric conditions these naphthalenes will react mainly with the OH radical, with life-times due to this reaction ranging from ca. 11 h for naphthalene to ca. 4 h for 2,3-dimethylnaphthalene. 相似文献
8.
The reactions of CH3 radicals with O(3P) and O2 have been studied at 295 K in a gas flow reactor sampled by a mass spectrometer. For the reaction between CH3 and O, conditions were such that [O] » [CH3] and the methyl radicals decayed under pseudo-first-order conditions giving a rate coefficient of (1.14 ± 0.29) × 10?10 cm3/s. The reaction between CH3 and O2 was studied in separate experiments in which CH3 decayed under pseudo-first-order conditions. In this case, the rate coefficient obtained increased with increasing concentration of the helium carrier gas. This was varied over the range of 2.5–25 × 1016 cm?3, resulting in values for the apparent two-body rate coefficient ranging from 1 × 10?14 to 5.2 × 10?14 cm3/s. No evidence was found for the production of HCHO by a direct two-body process involving CH3 + O2, and an upper limit of 3 × 10?16 cm3/s was placed on the rate coefficient for this reaction. The experimental results for the apparent two-body rate coefficient exhibit the curvature one would expect for an association reaction in the fall-off region. Calculations used to extrapolate these measurements to the low-pressure limit yield a value for k0 of (3.4 ± 1.1) × 10?31 cm6/s, which is more than a factor of 2 higher than previous estimates. 相似文献
9.
The rate coefficients for the gas-phase reactions of C2H5O2 and n-C3H7O2 radicals with NO have been measured over the temperature range of (201–403) K using chemical ionization mass spectrometric detection of the peroxy radical. The alkyl peroxy radicals were generated by reacting alkyl radicals with O2, where the alkyl radicals were produced through the pyrolysis of a larger alkyl nitrite. In some cases C2H5 radicals were generated through the dissociation of iodoethane in a low-power radio frequency discharge. The discharge source was also tested for the i-C3H7O2 + NO reaction, yielding k298 K = (9.1 ± 1.5) × 10−12 cm3 molecule−1 s−1, in excellent agreement with our previous determination. The temperature dependent rate coefficients were found to be k(T) = (2.6 ± 0.4) × 10−12 exp{(380 ± 70)/T} cm3 molecule−1 s−1 and k(T) = (2.9 ± 0.5) × 10−12 exp{(350 ± 60)/T} cm3 molecule−1 s−1 for the reactions of C2H5O2 and n-C3H7O2 radicals with NO, respectively. The rate coefficients at 298 K derived from these Arrhenius expressions are k = (9.3 ± 1.6) × 10−12 cm3 molecule−1 s−1 for C2H5O2 radicals and k = (9.4 ± 1.6) × 10−12 cm3 molecule−1 s−1 for n-C3H7O2 radicals. © 1996 John Wiley & Sons, Inc. 相似文献
10.
Rate constants for the gas-phase reactions of the biogenically emitted monoterpene β-phellandrene with OH and NO3 radicals and O3 have been measured at 297 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained were (in cm3 molecule?1 s?1 units): for reaction with the OH radical, (1.68 ± 0.41) × 10?10; for reaction with the NO3 radical, (7.96 ± 2.82) × 10?12; and for reaction with O3, (4.77 ± 1.23) × 10?17, where the error limits include the estimated uncertainties in the reference reaction rate constants. Using these rate constants, the lifetime of β-phellandrene in the lower troposphere due to reaction with these species is calculated to be in the range of ca. 1–8 h, with the OH radical reaction being expected to dominate over the O3 reaction as a loss process for β-phellandrene during daylight hours. 相似文献
11.
The radical reaction mechanism of FCO + NO on the ground electronic state energy surface has been studied at the G2M level of theory based on the geometric parameters optimized at the B3LYP/6-311+G(d) level of theory. The two kinds of reaction pathways include the direct fluorine abstraction channel producing CO + FNO and the association channel forming the FC(O)NO complex. The former has a distinct barrier of 8.9 kcal mol(-1), while the latter is a barrierless association process. The rate constant of this reaction system in the temperature range 200-3000 K has been calculated by the microcanonical VTST/RRKM theory. The theoretical result shows that the predicted total rate constants exhibit a negative-temperature dependence and positive-pressure effect at lower temperatures. Under the experimental conditions, the predicted values are in good agreement with the experimental results. In addition, the predicted branching ratios clearly indicate that the dominant product channel is the formation of FC(O)NO at low temperatures and FNO + CO at high temperatures (>500 K). 相似文献
12.
When bromoform (CHBr3) is photolyzed at 266 or 303 nm in the presence of O2 and NO, the formation of secondary Br atoms is observed. By following the rate of growth of this secondary Br atom signal as a function of conditions, rate constants have been determined for the reactions CHBr2 + O2, CHBr2 + NO (both pressure-dependent), and CHBr2O2 + NO (k(2a) = (1.74 +/- 0.16) x 10(-11) cm3 molecule(-1) s(-1) at 23 degrees C). By measuring the amplitude of the secondary Br signal compared to the primary Br formed in the initial photolysis, it is established that the CHBr2O radical spontaneously decomposes to form CHBrO + Br at least 90%, and probably 100%, of the time, in agreement with previous work and with recent ab initio calculations. A survey of four other polybrominated methanes, CH2Br2, CHClBr2, CF2Br2, and CBr4, shows that they all generate secondary Br atoms when photolyzed at 266 nm in the presence of O2 and NO, suggesting that their reaction sequences are similar to that of bromoform. 相似文献
13.
Fourier transform infrared spectroscopy was used to identify and quantify products of the self reaction of ethylperoxy radicals, C2H5O2, formed in the photolysis of Cl2/C2H6 mixtures in 700 torr total pressure of synthetic air at 295 K. From these measurements, branching ratios for the reaction channels (1) of k1a/(k1a + k1b) = 0.68 and k1c/(k1a + k1b + k1c) ? 0.06 were established. Additionally, using the relative rate technique, the rate constant for the reaction of Cl atoms with C2H5OOH was determined to be (1.07 ± 0.07) × 10?10 × cm3 molecule?1 s?1. Results are discussed with respect to the previous kinetic and mechanistic studies of C2H5O2 radicals. 相似文献
14.
T. J. Wallington T. Ellermann OLE J. Nielsen 《Research on Chemical Intermediates》1994,20(3-5):265-276
The ultraviolet absorption spectra and self reaction kinetics of CF3CCI2 and CF3CCI2O2 radicals have been studied in the gas phase at 295K. Absorption cross sections were quantified over the wavelength range 220–300 nm. Measured cross sections near the absorption maxima were γCF3CCI2(230 nm) = (9.70 ± 1.47) x 10-18 and γCF3CCI2O2(250 nm) = (1.70 ± 0.26) x 10-18 cm2 molecule-1. Errors are statistical (2γ) together with our estimate of potential systematic errors. Rate constants for the self reaction of CF3CCI2 and CF3CCI2O2 radicals were measured to be k6 = (2.46 ± 0.43) x 10-12 and k7obs = (3.33 ± 0.53) x 10-12 cm3 molecule-1 s-1, respectively. Results are discussed with respect to the existing database concerning halogenated peroxy radicals. 相似文献
15.
The kinetics of C2H5O2 and C2H5O2 radicals with NO have been studied at 298 K using the discharge flow technique coupled to laser induced fluorescence (LIF) and mass spectrometry analysis. The temporal profiles of C2H5O were monitored by LIF. The rate constant for C2H5O + NO → Products (2), measured in the presence of helium, has been found to be pressure dependent: k2 = (1.25±0.04) × 10?11, (1.66±0.06) × 10?11, (1.81±0.06) × 10?11 at P (He) = 0.55, 1 and 2 torr, respectively (units are cm3 molecule?1 s?1). The Lindemann-Hinshelwood analysis of these rate constant data and previous high pressure measurements indicates competition between association and disproportionation channels: C2H5O + NO + M → C2H5ONO + M (2a), C2H5O + NO → CH3CHO + HNO (2b). The following calculated average values were obtained for the low and high pressure limits of k2a and for k2b : k = (2.6±1.0) × 10?28 cm6 molecule?2 s?1, k = (3.1±0.8) × 10?11 cm3 molecule?1 s?1 and k2b ca. 8 × 10?12 cm3 molecule?1 s?1. The present value of k, obtained with He as the third body, is significantly lower than the value (2.0±1.0) × 10?27 cm6 molecule?2 s?1 recommended in air. The rate constant for the reaction C2H5O2 + NO → C2H5O + NO2 (3) has been measured at 1 torr of He from the simulation of experimental C2H5O profiles. The value obtained for k3 = (8.2±1.6) × 10?12 cm3 molecule?1 s?1 is in good agreement with previous studies using complementary methods. © 1995 John Wiley & Sons, Inc. 相似文献
16.
《Chemical physics letters》1987,133(1):39-44
We report results of a flash photolysis study of the UV, spectra of HO2 and CH3O2 radicals, obtained by using a calibration technique based on the reaction Cl+NO→NOCl. We also report preliminary results from our study of the kinetics of the reaction CH3O2+HO2→products at room temperature and near atmospheric pressure. Our results are consistent with the only previous direct determination of the rate constant of the second reaction: k1 = (6.4 ± 1.0) × 10−12cm3 molecule− s−1. From the same study we derive rate constants for the self-reaction of HO2 and CH3O2 radicals, which agree with recommended values. 相似文献
17.
The kinetics of the gas-phase reaction of Cl atoms with CF3I have been studied relative to the reaction of Cl atoms with CH4 over the temperature range 271–363 K. Using k(Cl + CH4) = 9.6 × 10?12 exp(?2680/RT) cm3 molecule?1 s?1, we derive k(Cl + CF3I) = 6.25 × 10?11 exp(?2970/RT) in which Ea has units of cal mol?1. CF3 radicals are produced from the reaction of Cl with CF3I in a yield which was indistinguishable from 100%. Other relative rate constant ratios measured at 296 K during these experiments were k(Cl + C2F5I)/k(Cl + CF3I) = 11.0 ± 0.6 and k(Cl + C2F5I)/k(Cl + C2H5Cl) = 0.49 ± 0.02. The reaction of CF3 radicals with Cl2 was studied relative to that with O2 at pressures from 4 to 700 torr of N2 diluent. By using the published absolute rate constants for k(CF3 + O2) at 1–10 torr to calibrate the pressure dependence of these relative rate constants, values of the low- and high-pressure limiting rate constants have been determined at 296 K using a Troe expression: k0(CF3 + O2) = (4.8 ± 1.2) × 10?29 cm6 molecule?2 s?1; k∞(CF3 + O2) = (3.95 ± 0.25) × 10?12 cm3 molecule?1 s?1; Fc = 0.46. The value of the rate constant k(CF3 + Cl2) was determined to be (3.5 ± 0.4) × 10?14 cm3 molecule?1 s?1 at 296 K. The reaction of Cl atoms with CF3I is a convenient way to prepare CF3 radicals for laboratory study. © 1995 John Wiley & Sons, Inc. 相似文献
18.
Jens Sehested Thomas Ellermann Ole John Nielsen Timothy J. Wallington Michael D. Hurley 《国际化学动力学杂志》1993,25(9):701-717
The ultraviolet absorption spectrum, kinetics, and mechanism of the self reaction of CF3CF2O2 radicals have been studied in the gas phase at 295 K. Two techniques were used; pulse radiolysis UV absorption to measure the spectrum and kinetics, and long-path length FTIR spectroscopy to identify and quantify the reaction products. Absorption cross sections were quantified over the wavelength range 220–270 nm. At 230 nm, σ = (2.74 ± 0.46) ×10?18 cm2 molecule?1. This absorption cross section was used to derive the observed self reaction rate constant for reaction (1), defined as, ?d[CF3CF2O2]/dt = 2k1obs[CF3CF2O2]2: k1obs = (2.10 ± 0.38) ×10?12 cm3 molecule?1 s?1 (2σ). The observed products following the self reaction of CF3CF2O2 radicals were COF2, CF3O3CF3, CF3O3C2F5, and CF3OH. CF3O2CF3 was tentatively identified as a product. The carbon balance was 90–100%. The self reaction of CF3CF2O2 radicals was found to proceed via one channel to produce CF3CF2O radicals which then decompose to give CF3 radicals and COF2. In the presence of O2, CF3 radicals are converted into CF3O radicals. CF3O radicals have several fates; self reaction to give CF3O2CF3; reaction with CF3O2 radicals to give CF3O3CF3; reaction with C2F5O2 radicals to give CF3O3C2F5; or reaction with CF3CF2H to give CF3OH. As part of this work a rate constant of (2.5 ± 0.6) ×10?16 cm3 molecule?s?1 was measured for the reaction of Cl atoms with CF3CHF2 using a relative rate technique. Results are discussed with respect to the atmospheric chemistry of CF3CF2H (HFC-125). © 1993 John Wiley & Sons, Inc. 相似文献
19.
Ole J. Nielsen Thomas Ellermann Jens Sehested Elzbieta Bartkiewicz Timothy J. Wallington Michael D. Hurley 《国际化学动力学杂志》1992,24(11):1009-1021
The ultraviolet absorption spectrum and the self reaction kinetics of CF3O2 radicals have been studied in the gas phase at 298 K using the pulse radiolysis technique. Long pathlength Fourier transform infrared (FTIR) spectroscopy was used to identify and quantify reaction products. Absorption cross sections were quantified over the wavelength range 215–270 nm. The measured cross section at 230 nm was; Errors represent statistical (2σ) together with our estimate of potential systematic errors. The absorption cross section data were then used to derive the observed self reaction rate constant for reaction (1), defined as ?d[CF3O2]/dt = 2k obs[CF3O2]2 klobs = (3.6 ± 0.9) × 10?12 cm3 molecule?1 s?1. The only carbon containing product observed by FTIR spectroscopy was CF3OOOCF3. Consideration of the loss of CF3O2 radicals to form the trioxide CF3OOOCF3 allows derivation of the true bimolecular rate constant for reaction (1); k1 = (1.8 ± 0.5) × 10?12 cm3 molecule?1 s?1. These results are discussed with respect to previous studies of the absorption spectra of peroxy radicals, the kinetics, and mechanisms of their self reaction. © John Wiley & Sons, Inc. 相似文献
20.
Roger Atkinson William P. L. Carter Christopher N. Plum Arthur M. Winer James N. Pitts 《国际化学动力学杂志》1984,16(7):887-898
Rate constants have been determined at 296 ± 2 K for the gas phase reaction of NO3 radicals with a series of aromatics using a relative rate technique. The rate constants obtained (in cm3 molecule?1 s?1 units) were: benzene, <2.3 × 10?17; toluene, (1.8 ± 1.0) × 10?17; o? xylene, (1.1 ± 0.5) × 10?16; m? xylene, (7.1 ± 3.4) × 10?17; p? xylene, (1.4 ± 0.6) × 10?16; 1,2,3-trimethylbenzene, (5,6 ± 2.6) × 10?16; 1,2,4-trimethylbenzene (5.4 - 2.5) × 10?16; 1,3,5-trimethylbenzene, (2.4 ± 1.1) × 10?16; phenol, (2.1 ± 0.5) × 10?12; methoxybenzene, (5.0 ± 2.8) × 10?17; o-cresol, (1.20 ± 0.34) × 10?11; m-cresol, (9.2 ± 2.4) × 10?12; p-cresol, (1.27 ± 0.36) × 10?11; and benzaldehyde, (1.13 ± 0.25) × 10?15. These kinetic data, together with, in the case of phenol, product data, suggest that these reactions proceed via H-atom abstraction from the substituent groups. The magnitude of the rate constants for the hydroxy-substituted aromatics indicates that the nighttime reaction of NO3 radicals with these aromatics can be an important loss process for both NO3 radicals and these organics, as well as being a possible source of nitric acid, a key component of acid deposition. 相似文献