首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 339 毫秒
1.
. Let d(D) (resp., d(G)) denote the diameter and r(D) (resp., r(G)) the radius of a digraph D (resp., graph G). Let G×H denote the cartesian product of two graphs G and H. An orientation D of G is said to be (r, d)-invariant if r(D)=r(G) and d(D)=d(G). Let {T i }, i=1,…,n, where n≥2, be a family of trees. In this paper, we show that the graph ∏ i =1 n T i admits an (r, d)-invariant orientation provided that d(T 1)≥d(T 2)≥4 for n=2, and d(T 1)≥5 and d(T 2)≥4 for n≥3. Received: July 30, 1997 Final version received: April 20, 1998  相似文献   

2.
A set S of vertices of a graph G is a total dominating set, if every vertex of V(G) is adjacent to some vertex in S. The total domination number of G, denoted by γt(G), is the minimum cardinality of a total dominating set of G. We prove that, if G is a graph of order n with minimum degree at least 3, then γt(G) ≤ 7n/13. © 2000 John Wiley & Sons, Inc. J Graph Theory 34:9–19, 2000  相似文献   

3.
For a graph G, the cochromatic number of G, denoted z(G), is the least m for which there is a partition of the vertex set of G having order m. where each part induces a complete or empty graph. We show that if {Gn} is a family of graphs where Gn has o(n2 log2(n)) edges, then z(Gn) = o(n). We turn our attention to dichromatic numbers. Given a digraph D, the dichromatic number of D is the minimum number of parts the vertex set of D must be partitioned into so that each part induces an acyclic digraph. Given an (undirected) graph G, the dichromatic number of G, denoted d(G), is the maximum dichromatic number of all orientations of G. Let m be an integer; by d(m) we mean the minimum size of all graphs G where d(G) = m. We show that d(m) = θ(m2 ln2(m)).  相似文献   

4.
 A set AV of the vertices of a graph G=(V,E) is an asteroidal set if for each vertex aA, the set A\{a} is contained in one component of GN[a]. The maximum cardinality of an asteroidal set of G, denoted by an (G), is said to be the asteroidal number of G. We investigate structural properties of graphs of bounded asteroidal number. For every k≥1, an (G)≤k if and only if an (H)≤k for every minimal triangulation H of G. A dominating target is a set D of vertices such that DS is a dominating set of G for every set S such that G[DS] is connected. We show that every graph G has a dominating target with at most an (G) vertices. Finally, a connected graph G has a spanning tree T such that d T (x,y)−d G (x,y)≤3·|D|−1 for every pair x,y of vertices and every dominating target D of G. Received: July 3, 1998 Final version received: August 10, 1999  相似文献   

5.
Let i be a positive integer. We generalize the chromatic number X(G) of G and the clique number o(G) of G as follows: The i-chromatic number of G, denoted by X(G), is the least number k for which G has a vertex partition V1, V2,…, Vk such that the clique number of the subgraph induced by each Vj, 1 ≤ jk, is at most i. The i-clique number, denoted by oi(G), is the i-chromatic number of a largest clique in G, which equals [o(G/i]. Clearly X1(G) = X(G) and o1(G) = o(G). An induced subgraph G′ of G is an i-transversal iff o(G′) = i and o(GG′) = o(G) − i. We generalize the notion of perfect graphs as follows: (1) A graph G is i-perfect iff Xi(H) = oi(H) for every induced subgraph H of G. (2) A graph G is perfectly i-transversable iff either o(G) ≤ i or every induced subgraph H of G with o(H) > i contains an i-transversal of H. We study the relationships among i-perfect graphs and perfectly i-transversable graphs. In particular, we show that 1-perfect graphs and perfectly 1-transversable graphs both coincide with perfect graphs, and that perfectly i-transversable graphs form a strict subset of i-perfect graphs for every i ≥ 2. We also show that all planar graphs are i-perfect for every i ≥ 2 and perfectly i-transversable for every i ≥ 3; the latter implies a new proof that planar graphs satisfy the strong perfect graph conjecture. We prove that line graphs of all triangle-free graphs are 2-perfect. Furthermore, we prove for each i greater than or equal to2, that the recognition of i-perfect graphs and the recognition of perfectly i-transversable graphs are intractable and not likely to be in co-NP. We also discuss several issues related to the strong perfect graph conjecture. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
We write HG if every 2‐coloring of the edges of graph H contains a monochromatic copy of graph G. A graph H is Gminimal if HG, but for every proper subgraph H′ of H, H′ ? G. We define s(G) to be the minimum s such that there exists a G‐minimal graph with a vertex of degree s. We prove that s(Kk) = (k ? 1)2 and s(Ka,b) = 2 min(a,b) ? 1. We also pose several related open problems. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 167–177, 2007  相似文献   

7.
Let ex * (D; H) denote the maximum number of edges in a connected graph with maximum degree D and no induced subgraph isomorphic to H. We prove that this is finite only when H is a disjoint union of paths,m in which case we provide crude upper and lower bounds. When H is the four-vertex path P4, we prove that the complete bipartite graph KD,D is the unique extremal graph. Furthermore, if G is a connected P4-free graph with maximum degree D and clique number ω, then G has at most D2 ? D(ω ? 2)/2 edges. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Given a digraph D on vertices v1, v2, ?, vn, we can associate a bipartite graph B(D) on vertices s1, s2, ?, sn, t1, t2, ?, tn, where sitj is an edge of B(D) if (vi, vj) is an arc in D. Let OG denote the set of all orientations on the (undirected) graph G. In this paper we will discuss properties of the set S(G) := {β1 (B(D))) | D ? OG}, where β1 is the edge independence number. In the first section we present some background and related concepts. We show that sets of the form S(G) are convex and that max S(G) ≦ 2 min S(G). Furthermore, this completely characterizes such sets. In the second section we discuss some bounds on elements of S(G) in terms of more familiar graphical parameters. The third section deals with extremal problems. We discuss bounds on elements of S(G) if the order and size of G are known, particularly when G is bipartite. In this section we exhibit a relation between max S(G) and the concept of graphical closure. In the fourth and final section we discuss the computational complexity of computing min S(G) and max S(G). We show that the first problem is NP-complete and that the latter is polynomial.  相似文献   

9.
Let G be a connected graph with vertex set V(G) = {v1, v2,..., v n }. The distance matrix D(G) = (d ij )n×n is the matrix indexed by the vertices of G, where d ij denotes the distance between the vertices v i and v j . Suppose that λ1(D) ≥ λ2(D) ≥... ≥ λ n (D) are the distance spectrum of G. The graph G is said to be determined by its D-spectrum if with respect to the distance matrix D(G), any graph having the same spectrum as G is isomorphic to G. We give the distance characteristic polynomial of some graphs with small diameter, and also prove that these graphs are determined by their D-spectra.  相似文献   

10.
Closed Separator Sets   总被引:1,自引:0,他引:1  
A smallest separator in a finite, simple, undirected graph G is a set SV (G) such that GS is disconnected and |S|=κ(G), where κ(G) denotes the connectivity of G. A set S of smallest separators in G is defined to be closed if for every pair S,TS, every component C of GS, and every component S of GT intersecting C either X(C,D) := (V (C) ∩ T) ∪ (TS) ∪ (SV (D)) is in S or |X(C,D)| > κ(G). This leads, canonically, to a closure system on the (closed) set of all smallest separators of G. A graph H with is defined to be S-augmenting if no member of S is a smallest separator in GH:=(V (G) ∪ V (H), E(G) ∪ E(H)). It is proved that if S is closed then every minimally S-augmenting graph is a forest, which generalizes a result of Jordán. Several applications are included, among them a generalization of a Theorem of Mader on disjoint fragments in critically k-connected graphs, a Theorem of Su on highly critically k-connected graphs, and an affirmative answer to a conjecture of Su on disjoint fragments in contraction critically k-connected graphs of maximal minimum degree.  相似文献   

11.
Let H be a multigraph and G a graph containing a subgraph isomorphic to a subdivision of H, with SV(G) (the ground set) the image of V(H) under the isomorphism. We consider connectivity and minimum degree or degree sum conditions sufficient to imply there is a spanning subgraph of G isomorphic to a subdivision of H on the same ground set S. These results generalize a number of theorems in the literature.  相似文献   

12.
Wenxu Ge  Hongbo Lv 《代数通讯》2013,41(7):2418-2432
Let H be a hereditary algebra of Dynkin type D n over a field k and 𝒞 H be the cluster category of H. Assume that n ≥ 5 and that T and T′ are tilting objects in 𝒞 H . We prove that the cluster-tilted algebra Γ = End𝒞 H (T)op is isomorphic to Γ′ = End𝒞 H (T′)op if and only if T = τ i T′ or T = στ j T′ for some integers i and j, where τ is the Auslander–Reiten translation and σ is the automorphism of 𝒞 H defined in Section 4.  相似文献   

13.
Let S be a finite set of graphs and t a real number, 0 < t < 1. A (deterministic) graph G is (t, 5)-proportional if for every HS, the number of induced subgraphs of G isomorphic to H equals the expected number of induced copies of H in the random graph Gn, t where n = |V(G)|. Let Sk = {all graphs on k vertices}, in particular S3 = {K3, P2, K2Kt, D3}. The notion of proportional graphs stems from the study of random graphs (Barbour, Karoński, and Ruciński, J Combinat. Th. Ser. B, 47 , 125-145, 1989; Janson and Nowicki, Prob. Th. Rel. Fields, to appear, Janson, Random Struct. Alg., 1 , 15-37, 1990) where it is shown that (t, S3)-proportional graphs play a very special role; we thus call them simply t-proportional. However, only a few ½-proportional graphs on 8 vertices were known and it was an open problem whether there are any f-proportional graphs with t ≠ ½ at all. In this paper, we show that there are infinitely many ½-proportional graphs and that there are t-proportional graphs with t≠. Both results are proved constructively. [We are not able to provide the latter construction for all f∈ Q∩(0,1), but the set of ts for which our construction works is dense in (0,1).] To support a conviction that the existence of (t, S3)-proportional graphs was not quite obvious, we show that there are no (t, S4)-proportional graphs.  相似文献   

14.
Let Qn be a hypercube of dimension n, that is, a graph whose vertices are binary n-tuples and two vertices are adjacent iff the corresponding n-tuples differ in exactly one position. An edge coloring of a graph H is called rainbow if no two edges of H have the same color. Let f(G,H) be the largest number of colors such that there exists an edge coloring of G with f(G,H) colors such that no subgraph isomorphic to H is rainbow. In this paper we start the investigation of this anti-Ramsey problem by providing bounds on f(Qn,Qk) which are asymptotically tight for k = 2 and by giving some exact results.  相似文献   

15.
The maximum matching graph M(G) of a graph G is a simple graph whose vertices are the maximum matchings of G and where two maximum matchings are adjacent in M(G) if they differ by exactly one edge. In this paper, we prove that if a graph is isomorphic to its maximum matching graph, then every block of the graph is an odd cycle.  相似文献   

16.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. It is known [J Graph Theory 35 (2000), 21–45] that if G is a connected graph of order n > 10 with minimum degree at least 2, then γt(G) ≤ 4n/7 and the (infinite family of) graphs of large order that achieve equality in this bound are characterized. In this article, we improve this upper bound of 4n/7 for 2‐connected graphs, as well as for connected graphs with no induced 6‐cycle. We prove that if G is a 2‐connected graph of order n > 18, then γt(G) ≤ 6n/11. Our proof is an interplay between graph theory and transversals in hypergraphs. We also prove that if G is a connected graph of order n > 18 with minimum degree at least 2 and no induced 6‐cycle, then γt(G) ≤ 6n/11. Both bounds are shown to be sharp. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 55–79, 2009  相似文献   

17.
In a seminal paper (Alon and Tarsi, 1992 [6]), Alon and Tarsi have introduced an algebraic technique for proving upper bounds on the choice number of graphs (and thus, in particular, upper bounds on their chromatic number). The upper bound on the choice number of G obtained via their method, was later coined the Alon–Tarsi number of G and was denoted by AT(G) (see e.g. Jensen and Toft (1995) [20]). They have provided a combinatorial interpretation of this parameter in terms of the eulerian subdigraphs of an appropriate orientation of G. Their characterization can be restated as follows. Let D be an orientation of G. Assign a weight ωD(H) to every subdigraph H of D: if HD is eulerian, then ωD(H)=(−1)e(H), otherwise ωD(H)=0. Alon and Tarsi proved that AT(G)?k if and only if there exists an orientation D of G in which the out-degree of every vertex is strictly less than k, and moreover HDωD(H)≠0. Shortly afterwards (Alon, 1993 [3]), for the special case of line graphs of d-regular d-edge-colorable graphs, Alon gave another interpretation of AT(G), this time in terms of the signed d-colorings of the line graph. In this paper we generalize both results. The first characterization is generalized by showing that there is an infinite family of weight functions (which includes the one considered by Alon and Tarsi), each of which can be used to characterize AT(G). The second characterization is generalized to all graphs (in fact the result is even more general—in particular it applies to hypergraphs). We then use the second generalization to prove that χ(G)=ch(G)=AT(G) holds for certain families of graphs G. Some of these results generalize certain known choosability results.  相似文献   

18.
The undirected power graph G(S) of a semigroup S is an undirected graph whose vertex set is S and two vertices a,bS are adjacent if and only if ab and a m =b or b m =a for some positive integer m. In this paper we characterize the class of semigroups S for which G(S) is connected or complete. As a consequence we prove that G(G) is connected for any finite group G and G(G) is complete if and only if G is a cyclic group of order 1 or p m . Particular attention is given to the multiplicative semigroup ℤ n and its subgroup U n , where G(U n ) is a major component of G(ℤ n ). It is proved that G(U n ) is complete if and only if n=1,2,4,p or 2p, where p is a Fermat prime. In general, we compute the number of edges of G(G) for a finite group G and apply this result to determine the values of n for which G(U n ) is planar. Finally we show that for any cyclic group of order greater than or equal to 3, G(G) is Hamiltonian and list some values of n for which G(U n ) has no Hamiltonian cycle.  相似文献   

19.
Let D be a connected oriented graph. A set SV(D) is convex in D if, for every pair of vertices x,yS, the vertex set of every x-y geodesic (x-y shortest dipath) and y-x geodesic in D is contained in S. The convexity numbercon(D) of a nontrivial oriented graph D is the maximum cardinality of a proper convex set of D. Let G be a graph. We define that SC(G)={con(D):D is an orientation of G} and SSC(G)={con(D):D is a strongly connected orientation of G}. In the paper, we show that, for any n?4, 1?a?n-2, and a≠2, there exists a 2-connected graph G with n vertices such that SC(G)=SSC(G)={a,n-1} and there is no connected graph G of order n?3 with SSC(G)={n-1}. Then, we determine that SC(K3)={1,2}, SC(K4)={1,3}, SSC(K3)=SSC(K4)={1}, SC(K5)={1,3,4}, SC(K6)={1,3,4,5}, SSC(K5)=SSC(K6)={1,3}, SC(Kn)={1,3,5,6,…,n-1}, SSC(Kn)={1,3,5,6,…,n-2} for n?7. Finally, we prove that, for any integers n, m, and k with , 1?k?n-1, and k≠2,4, there exists a strongly connected oriented graph D with n vertices, m edges, and convexity number k.  相似文献   

20.
For two graphs, G and H, an edge coloring of a complete graph is (G,H)-good if there is no monochromatic subgraph isomorphic to G and no rainbow subgraph isomorphic to H in this coloring. The set of numbers of colors used by (G,H)-good colorings of Kn is called a mixed Ramsey spectrum. This note addresses a fundamental question of whether the spectrum is an interval. It is shown that the answer is “yes” if G is not a star and H does not contain a pendant edge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号