首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tri(1‐cyclohepta‐2, 4, 6‐trienyl)phosphane, P(C7H7)3 ([P] when coordinated to a metal atom), was used to stabilize complexes of platinum(II) and palladium(II) with chelating dichalcogenolato ligands as [P]M(E∩E) [E = S, ∩ = CH2CH2, M = Pt ( 3a ); E = S, ∩ = 1, 2‐C6H4, M = Pt ( 5a ), Pd ( 6a ); E = S, ∩ = C(O)C(O), M = Pt ( 7a ), Pd ( 8a ); E = S, Se, ∩ = 1, 2‐C2(B10H10), M = Pt ( 9a, 9b ), Pd ( 10a, 10b ); E = S, ∩ = Fe2(CO)6, M = Pt ( 11a ), Pd ( 12a )]. Starting materials in all reactions were [P]MCl2 with M = Pt ( 1 ) and Pd ( 2 ). Attempts at the synthesis of [P]M(ER)2 with non‐chelating chalcogenolato ligands were not successful. All new complexes were characterized by multinuclear magnetic resonance spectroscopy in solution (1H, 13C, 31P, 77Se and 195Pt NMR), and the molecular structures of 5a and 12a were determined by X‐ray analysis. Both in the solid state and in solution the ligand [P] is linked to the metal atom by the P‐M bond and by η2‐C=C coordination of the central C=C bond of one of the C7H7 rings. In solution, intramolecular exchange between coordinated and non‐coordinated C7H7 rings is observed, the exchange process being markedly faster in the case of M = Pd than for M = Pt.  相似文献   

2.
Metathesis reaction of the dithioether complex cis‐[PtCl2{(PhSCH2)2SiPh2}] ( 2a ) with NaBr and NaI yields the square planar complexes cis‐[PtX2{(PhSCH2)2SiPh2}] ( 2b , X = Br; 2c , X = I). The new compounds, which are fluxional in solution, have been studied by multinuclear NMR techniques; the crystal structures of 2a‐c have been determined by X ray diffraction. This series allows to evaluate the trans‐influence of the halide ligands on the lengths of the Pt‐S bonds, which increase from 227.26(12) ( 2a ), 228.46(13) ( 2b ) to 229.96(15) ( 2c ) pm due to a more pronounced trans‐influence of I compared with Br and Cl. Complexation of (PhSCH2)2SiPh2 ( 1a ) on HgBr2 gives the distorted tetrahedral compound [HgBr2{(PhSCH2)2SiPh2}] ( 3 ), having a quite loose coordination of the ligand both in solution and in the solid state [Hg‐S = 291.88(2) pm]. Alternatively, the coordination around Hg may be described as distorted square pyramidal in the solid state, since to due to a weak intermolecular Hg···Br interaction [346.72(13) pm], a dimeric motif is formed. Furthermore, the functionalised cyclic silane (PhSCH2)2SiC4H6 ( 1b ) has been prepared and co‐ordinated as chelating dithioether ligands to [PtCl2(PhCN)2] affording the dithioether complex cis‐[PtCl2{(PhSCH2)2SiC4H6)}] ( 4 ). The crystal structure of 4 has also been determined by an X‐ray diffraction study.  相似文献   

3.
The N‐acyl thiourea complexes bis[N,N‐diethyl‐N′‐(p‐nitrobenzoyl)‐thioureato]copper(II) ( 1a,1b ) and bis(N,N‐diphenyl‐N′‐benzoylthioureato)copper(II) ( 2a,2b ) crystallize in each case in two modifications. X‐ray structural analysis shows that 1a and 1b are cis‐trans isomers. This is very unusual for N‐acyl thioureato complexes because with exception of one platinum(II) complex up to now only cis complexes have been found. In contrast X‐ray structural analysis of both forms 2a and 2b of the other complex shows no cis‐trans pair. Both modifications are cis complexes. In solution both isomers of the copper(II) complexes are observable by EPR spectroscopy.  相似文献   

4.
Monomeric and Polymeric Dimethylaminothiosquarato Complexes: The Crystal Structures of Nickel(II), Cobalt(II), Silver(I), Platinum(II), Gold(I), Mercury(II) and Lead(II) Dimethylaminothiosquarates The ligand 2‐dimethylamino‐3, 4‐dioxo‐cyclobut‐1‐en‐thiolate, Me2N‐C4O2S (L) forms neutral and anionic complexes with nickel(II), cobalt(II)‐, silver(I)‐, platinum(II)‐, gold(I)‐, mercury(II)‐ and lead(II). According to the crystal structures of seven complexes the ligand is O, S‐chelating in [Ni(L)2(H2O)2]·2 H2O, [Co(L)2(CH3OH)2] and (with limitations) in [Pb(L)2·DMF]. In the remaining compounds the ligand behaves essentially as a thiolate ligand. The platinum, gold and mercury complexes [TMA]2[Pt(L)4], [TMA] [Au(L)2] and [Hg(L)2] are monomeric. In [TMA][Ag2(L)3]·5.5 H2O a chain‐like structure was found. In the asymmetric unit of this structure eight silver ions, with mutual distances in the range 2.8949(4) to 3.1660(3)Å, are coordinated by twelve thiosquarato ligands. [Pb(L)2·DMF] has also a polymeric structure. It contains a core of edge‐bridged, irregular PbS4 polyhedra. TMA[Au(H2NC4O2S)2] has also been prepared and its structure elucidated.  相似文献   

5.
Treatment of the ligand 6‐aza‐2‐thiothymine (ATT, HL, 1 ) with palladium chloride in methanol forms the ionic complex [(HL)4Pd]Cl2·8MeOH ( 2 ), while its reaction with palladium iodide in same solvent produces the neutral complex trans‐[(HL)2PdI2]·2MeOH ( 3 ) in high yields. The reaction of 1 with Na2[PdCl4] in the presence of sodium acetate in a molar ratio of 2:1:2 and with platinum(II) chloride in presence of sodium acetate led to the dimer tetranuclear complexes [(L4Pd2)NaCl]2·8MeOH ( 4 ) and [L4Pt2Cl2]·6MeOH·H2O ( 5 ). The latter is the first PtIII complex of the ligand. All complexes were characterized by elemental analyses and IR spectroscopy and the crystal structures of 2 , 3 , 4 and 5 are determined by single‐crystal X‐ray diffraction. Crystal data for 2 at ?80 °C: triclinic space group , a = 1006.6(1), b = 1006.9(1), c = 1158.1(1) pm, α = 85.20(1)°, β = 83.84(1)°, γ = 88.91(1)°, Z = 1, R1 = 0.0278; for 3 at ?80 °C: triclinic space group , a = 490.5(1), b = 977.2(2), c = 1116.8(2) pm, α = 90.26(1)°, β = 102.33(1)°, γ = 96.08(1)°, Z = 1, R1 = 0.0394; for 4 at ?80 °C: orthorhombic space group Ccca, a = 1791.7(2), b = 1874.1(2), c = 2044.0(1) pm, Z = 4, R1 = 0.0341 and for 5 at ?80 °C: monoclinic space group P21/c, a = 1464.3(1), b = 2003.7(1), c = 1368.5(1) pm, β = 95.66(1)°, Z = 4, R1 = 0.0429.  相似文献   

6.
Compounds of type [MX2(Hpben)] [M = Pd (X = Cl), Pt (X = Cl, I); Hpben = 2‐(2′‐pyridyl)benzimidazole] were prepared and characterized, and the structures of the Pt derivatives were determined by X‐ray crystallography. The crystals of [PtI2(Hpben)] consist of discrete units in which the Pt atom is coordinated to two iodine atoms and to pyridine and imidazole N atoms in a distorted square planar arrangement. The structure of the chloro derivative is similar, except that the [PtCl2(Hpben)] monomers are hydrogen‐bonded in zig‐zag chains. In assays of the interactions of the Pd and Pt chloro compounds with DNA, and of their in vitro cytotoxic activity against human cervical carcinoma cells (HeLa‐229), human ovarian carcinoma cells (A2780) and a cisplatin‐resistant mutant A2780 line (A2780cis), the only activity observed was modest cytotoxicity of the Pd derivative for A2780.  相似文献   

7.
We have computationally explored how the relative stabilities of 1‐methyluracil (1‐MeUH) tautomers can be tuned through coordination of these tautomers to PtII complexes with a particular set of ligands. This has been done using density functional theory at the BP86/TZ2P level. Thus, we have examined the water/1‐MeUH exchange reactions of [PtII(A)(B)(C)(OH2)]q + 1‐MeUH to uncover: i) which tautomers are best stabilized by the PtII complex, and ii) how the net charge q in the complex affects the reaction energy. The net charge q depends on the ligands A, B, and C, which can be the neutral NH3 or anionic Cl?. To reveal the effect of solvation, all reaction systems are studied both in the gas phase and in water. Also the stabilization of tautomers of 1‐methylthymine (1‐MeTH) by cisplatin is investigated. The calculations reveal that relative energies of the metal (here: PtII)‐complexed forms of the various tautomers (here: of 1‐MeUH and 1‐MeTH) do not parallel those of the free tautomers. Rather, a rare nucleobase tautomer, despite its low natural abundance, may become favored over the predominant one when complexed to a metal ion.  相似文献   

8.
Heteroleptic nickel(II) complexes [NiL2L′] of a series of monoanionic and potentially bidentate N‐2‐pyridyl‐sulfonamide ligands [HL] and 2,2′‐bipyridine or 1,10‐Phenanthroline (L′) have been prepared by electrochemical oxidation of a nickel anode in an acetonitrile solution of the ligands. The complexes have been characterized by microanalysis, IR and electronic spectroscopy, magnetic measurements and LSI mass spectrometry. The crystal structure of [Ni(Ms6mepy)2(bipy)] has been determined by x‐ray diffraction and shows the metal in an octahedral NiN6 environment. Octahedral structures are also proposed for the other complexes with the N‐2‐pyridyl‐sulfonamide ligands acting as N,N′ or N, O bidentate systems, depending on the position of the methyl substituent on the pyridine ring.  相似文献   

9.
18‐crown‐6(18‐C‐6) complexes with K2[M(SeCN)4] (M = Pd, Pt): [K(18‐C‐6)]2[Pd(SeCN)4] (H2O) ( 1 ) and [K(18‐C‐6)]2[Pt(SeCN)4](H2O) ( 2 ) have been isolated and characterized by elemental analysis, IR spectroscopy and single crystal X‐ray analysis. The complexes crystallize in the monoclinic space group P21/n with cell dimensions: 1 : a = 1.1159(3) Å, b = 1.2397(3) Å, c = 1.6003(4) Å, β = 92.798(4)°, V = 2.2111(8) Å3, Z = 2, F(000) = 1140, R1 = 0.0418, wR2 = 0.0932 and 2 : a = 1.1167(3) Å, b = 1.2394(3) Å, c = 1.5968(4) Å, β = 92.945(4)°, V = 2.2071(9) Å3, Z = 2, F(000) = 1204, R1 = 0.0341, wR2 = 0.0745. Both complexes form one‐dimensionally linked chains of [K(18‐C‐6)]+ cations and [M(SeCN)4]2— (M = Pd, Pt) anions bridged by K‐O‐K interactions between adjacent [K(18‐C‐6)]+ units.  相似文献   

10.
FeIIL2(OTf)2 ( 1 ) and MnIIL2(OTf)2 ( 2 ) (L = tris(1‐ethyl‐4‐methylimidazolyl‐κN)phosphine; OTf= trifluoromethanesulfonate) were synthesized and their X‐ray structures were determined. Both complexes possess distorted octahedral geometry with high spin electron configuration at ambient temperature. Compound 1 exhibits a quasi‐reversible wave with E1/2 of 0.745 V versus Ag/AgNO3. Variable temperature magnetic measurements indicate that no spin‐crossover phenomenon for 1 is observed between 2.5 and 300 K. In addition, a plot of 1/χM versus T(K) is linear with a Curie constant of 3.48 emu mol?1 K.  相似文献   

11.
The bissilyl complexes 3 – 6 were synthesized by reactions of the platinum(0) complexes [Pt(η2‐C2H4)(diphos)] ( 1 : diphos = dppe; 2 : diphos = dcpe) with the disilanes 1, 1,2, 2‐tetramethyldisilane and 1, 1,2, 2‐tetraphenyldisilane via Si–Si bond activation. The molecular structures of 4 and 5 in the solid state are reported. The reaction of 2 with HPh2SiSiPh2H led to the immediate formation of the hydrido disilanyl complex [Pt(H)(SiPh2SiPh2H)(dcpe)] ( 7 ), which converts slowly into the bissilyl complex [Pt(SiHPh2)2(dcpe)] ( 6 ). The latter was reported before to be a η2‐disilene complex.  相似文献   

12.
Decarboxylation reactions between the complexes cis–[PtCl2L] (L = 1, n–bis(diphenylphosphino)–ethane (n = 2, dppe), –propane (n = 3, dppp) or –butane (n = 4, dppb)) and thallium(I) pentafluorobenzoate in pyridine give cis–[PtCl(C6F5)L] and cis–[Pt(C6F5)2L] complexes in high yields with short reaction times. X–ray crystal structures of cis–[PtCl(C6F5)(dppe)] · 0.5 C5H5N, cis–[PtCl(C6F5)(dppp)], cis–[PtCl(C6F5)(dppb)] · C3H6O, cis–[Pt(C6F5)2L] (L = dppe, dppp and dppb) and the reactants cis–[PtCl2(dppp)] (as a CH2Cl2 solvate) and cis–[PtCl2(dppb)] show monomeric structures with chelating diphosphine ligands in all cases rather than dimers with bridging diphosphines. 31P NMR data are consistent with these structures in solution.  相似文献   

13.
The reaction of copper(I) chloride with 6‐aza‐2‐thiothymine (ATT, 1 ) and triphenylphosphane in methanol/chloroform gives [(ATT)CuCl(PPh3)] ( 2 ) as a neutral complex. [(ATT)Ag(NO3)(PPh3)2]·MeOH ( 3 ) can be obtained by the reaction of 1 with silver(I) nitrate and triphenylphosphane in methanol/chloroform in excellent yields and the single crystals of 3 can be obtained from acetonitril solution. Both complexes were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for 2 at —80 °C: space group I2/a with a = 1859.3(1), b = 1143.2(1), c = 2208.2(1) pm, β = 104.84(1)°, Z = 8, R1 = 0.0355 and for 3 at —80 °C: space group P21/c with a = 1344.1(1), b = 1553.6(1), c = 1977, 3(3) pm, β = 105.26(1)°, Z = 4, R1 = 0.0436.  相似文献   

14.
Four new complexes of [Cu(bpm)(ox)(H2O)] ( 1 ), [Cu(tpd)(dca)(H2O)] ( 2 ), [Cu(bppz)(N3)2] ( 3 ), and [Cu(bpm)21,3‐N3)(N3)] ( 4 ) (bpm = 2,2′‐bipyrimidine, bppz = 2,3‐bis(2‐pyridyl)pyrazine, tpd = 4‐terpyridone, dca = dicyanamide, ox = oxalate) have been prepared and characterized by X‐ray single‐crystal analysis and variable‐temperature magnetic measurements. Compounds 1–4 are essentially mononuclear Cu(II) complexes. However, in complex 1 , Cu(II) it was found that intermolecular hydrogen bonding through between H2O and ox formed 1‐D chain structure. In complex 2 it was found that the hydrogen bonding between H2O and tpd of the next molecule led to for a binuclear Cu(II) complex. In complex 3 , two nitrogen atoms, one of the pyridyl group of bppz and one of N3? ligands, are weakly coordinated to neighbor Cu(II) ion thus leading to formation of a 1‐D chain structure. In complex 4 , one nitrogen atom of terminated N3? is weakly coordinated to the neighbor Cu(II) site to form a 1‐D polymeric structure. The magnetic susceptibility measurements indicate that complex 1 and 4 exhibit a weak antiferromagnetic interaction whereas a ferromagnetic coupling has been established for complexes 2 and 3 .  相似文献   

15.
1‐(2‐Hydroxyethyl)‐3‐nitro‐1, 2, 4‐triazole (hnt), prepared by alkylation of 3‐nitro‐1, 2, 4‐triazole with 2‐chloroethanol, was found to react with copper(II) chloride and copper(II) perchlorate in acetonitrile/ethanol solutions giving complexes [Cu2(hnt)2Cl4(H2O)2] and[Cu(hnt)2(H2O)3](ClO4)2, respectively. They are the first examples of coordination compounds with a neutral N‐substituted 3‐nitro‐1, 2, 4‐triazole ligand. 1‐(2‐Hydroxyethyl)‐3‐nitro‐1, 2, 4‐triazole and the obtained complexes were characterized by NMR and IR spectroscopy, X‐ray, and thermal analyses. [Cu2(hnt)2Cl4(H2O)2] presents a dinuclear chlorido‐bridged complex in which hnt acts as a chelating bidentate ligand, coordinated to the metal by a nitrogen atom of the triazole ring and an oxygen atom of the nitro group, and the copper atoms are inconsiderably distorted octahedral coordination. [Cu(hnt)2(H2O)3](ClO4)2comprises a mononuclear complex cation, in which two nitrogen atoms of two hnt ligands in trans configuration and three water oxygen atoms form a square pyramidal environment around the copper atom, which is completed to an distorted octahedron with a bifurcated vertex due to two additional elongated Cu–O bonds with two nitro groups. In both complexes, Cu–O bonds with the nitro groups may be considered as semi‐coordinated.  相似文献   

16.
The synthesis and characterization of eight unprecedented phosphorescent C^C* cyclometalated mesoionic aryl‐1,2,3‐triazolylidene platinum(II) complexes with different β‐diketonate ligands are reported. All compounds proved to be strongly emissive at room temperature in poly(methyl methacrylate) films with an emitter concentration of 2 wt %. The observed photoluminescence properties were strongly dependent on the substitution on the aryl system and the β‐diketonate ligand. Compared to acetylacetonate, the β‐diketonates with aromatic substituents (mesityl and duryl) were found to significantly enhance the quantum yield while simultaneously reducing the emission lifetimes. Characterization was carried out by standard techniques, as well as solid‐state structure determination, which confirmed the binding mode of the carbene ligand. DFT calculations, carried out to predict the emission wavelength with maximum intensity, were in excellent agreement with the (later) obtained experimental data.  相似文献   

17.
Reaction of cis-[PtCl2(PPh3)2] with excess 3,3-dimethylglutarimide (dmgH) and sodium chloride in refluxing methanol gives the mono-imidate complex cis-[PtCl(dmg)(PPh3)2], which was structurally characterized. The plane of the imidate ligand is approximately perpendicular to the platinum coordination plane which, coupled with restricted rotation about the Pt–N bond, results in inequivalent methyl groups and CH2 protons of the dmg ligand in the room temperature 1H NMR spectrum. These observations were corroborated by a theoretical study using density functional theory methods. The analogous bromide complex cis-[PtBr(dmg)(PPh3)2] can be prepared by replacing NaCl with NaBr in the reaction mixture.  相似文献   

18.
Metal Complexes with N2O2S2 Donor Set. Synthesis and Characterization of the Cobalt(II), Nickel(II), and Copper(II) Complexes of a 15‐ and a 16‐Membered Bis(2‐hydroxyethyl) Pendant Macrocyclic Ligand The macrocyclic ligands 6, 10‐bis(2‐hydroxyethyl)‐7, 8, 9, 11, 17, 18‐hexahydro‐dibenzo‐[e, n][1, 4, 8, 12]‐dithiadiaza‐cyclopentadecine ( 1 ) (L1) and 5, 13‐bis(2‐hydroxyethyl)‐7, 8, 9, 10, 16, 17, 18, 19, 20‐nonahydro‐dibenzo‐[g, o][1, 9, 5, 13]‐dithiadiaza‐cyclohexadecine (L4) have been prepared. They form the stable complexes [CoL1(‐H)CoL1](ClO4)3 ( 2 ), [NiL1](ClO4)2·MeOH ( 3 ), Λ‐[CuL1](ClO4)2·MeOH ( 4a ) and rac‐[CuL1](ClO4)2·MeOH ( 4b ), [NiL4](ClO4)2 ( 5 ), and [CuL4](ClO4)2 ( 6 ). The compounds 1 to 6 have been characterized by standard methods and single‐crystal X‐ray diffraction. In the complexes 2 to 6 the metal atoms are octahedrally coordinated by the N2O2S2 donor set of the ligands. L1 and L4 are folded herein along the N···M···S‐ and the N···M···N′‐axes, respectively. This results at the metal atom in a allcis‐configuration for the complexes of L1 and a trans‐N2cis‐O2cis‐S2‐configuration for the complexes of L4. The cobalt(II) complex 2 is a dimer, bridged by a rather short hydrogen bridge of 2.402(12)Å length. The copper(II) complexes of L1 and L4 differ with respect to the Jahn‐Teller‐distortion.  相似文献   

19.
In modern cancer therapy the clinical application of platinum‐based drugs is more and more limited by the occurrence of intrinsic or acquired resistances. In this context the potential use of dinuclear platinum complexes in chemotherapy is increasingly relevant. The novel complexes Pd(Bzdpa)Cl2, Pd2(C4H8(dpa)2)Cl4, and Pt2(C4H8(dpa)2)Cl4 allow a direct comparison of mono‐ and dinuclear palladium and platinum complexes respectively deriving from a 2,2′‐dipyridylamine (Hdpa) ligand system. They were characterized by single crystal X‐ray analysis as well as infrared spectroscopy and elemental analysis. The cisplatin analogous mononuclear palladium complex Pd(Bzdpa)Cl2 ( 1 ) (Bzdpa: (2,2′‐dipyridylbenzyl)amine) belongs to a range of 2,2′‐dipyridylamine‐based compounds which were extensively studied in our laboratories. 1 crystallizes in the orthorhombic space group Pna21 with a = 13.722(3), b = 13.457(3), c = 9.483(2), V = 1751.1(6) Å3, and Z = 4. The metal binding motif of 1 was expanded by a flexible butyl‐linker to form the tetradentate C4H8(dpa)2 ligand. The resulting isotypic dinuclear complexes Pd2(C4H8(dpa)2)Cl4·2CH3CN ( 2 ) and Pt2(C4H8(dpa)2)Cl4·2CH3CN ( 3 ) crystallize in the triclinic space group with a = 7.8427(2), b = 8.7940(2), c = 11.7645 (3), α = 79.219(2)°, β = 84.033(2)°, γ = 87.744(2)°, V = 792.58(3) Å3 ( 2 ) and a = 7.831(5), b = 8.814(5), c = 11.817(5), α = 79.271(5)°, β = 83.571(5)°, γ = 88.063(5)°, V = 796.3(8) Å3 ( 3 ), both with one centrosymmetrical molecule in the unit cell.  相似文献   

20.
Ligand exchange reactions of cis‐PtCl2(PPh3)2 and [NMe4]SCF3 in different ratios were studied. Depending on the stoichiometry reactions proceeded with formation of products expected for the chosen ratio, i. e. cis‐Pt(SCF3)Cl(PPh3)2, cis‐Pt(SCF3)2(PPh3)2, and [NMe4][Pt(SCF3)3(PPh3)]. Starting from cis‐PtCl2(MeCN)2 and [NMe4]SCF3 and adding PPh3 after substitution, product mixtures were dominated by the corresponding trans‐isomers. Results of the single crystal structure analyses of cis‐Pt(SCF3)2(PPh3)2 and trans‐Pt(SCF3)Cl(PPh3)2 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号