首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title molecule, C40H32O6, possesses crystallographically imposed twofold symmetry, with the central two C atoms of the naphthalene unit sited on the rotation axis. The two 4‐phenoxybenzoyl groups in the molecule are twisted away from the attached naphthalene unit, with a torsion angle of 66.76 (15)° between the naphthalene unit and the carbonyl group (C—C—C=O), and are oriented in mutually opposing directions (anti orientation). There is an apparent difference in the conformations of the 4‐phenoxybenzoyl groups at the 1‐ and 8‐positions of the naphthalene ring between the title molecule and its methoxy‐bearing homologue [Hijikata et al. (2010). Acta Cryst. E 66 , o2902–o2903]. Whilst the 4‐phenoxybenzoyl groups in 2,7‐diisopropoxy‐1,8‐bis(4‐phenoxybenzoyl)naphthalene [Yoshiwaka et al. (2013). Acta Cryst. E 69 , o242] are situated in the same anti orientation as the title molecule, those of 2,7‐dimethoxy‐1,8‐bis(4‐phenoxybenzoyl)naphthalene are oriented in the same direction with respect to the naphthalene ring system, i.e. in a syn orientation.  相似文献   

2.
Treatment of 1,8‐bis(diphenylphosphino)naphthalene (dppn, 1 ) with stoichiometric amounts of sulfur or selenium in toluene at 80 °C selectively afforded the diphosphine monochalcogenides 1‐Ph2P(C10H6)‐8‐P(:S)Ph2 (dppnS, 2 a ) and 1‐Ph2P(C10H6)‐8‐P(:Se)Ph2 (dppnSe, 2 b ). The 31P{1H} NMR spectrum of 2 b showed an unusually large 5J(P–Se) value, which indicates a significant through‐space coupling component. The monosulfide acted as a bidentate P,S‐ligand towards platinum(II) ( 3 a ), whereas the corresponding monoselenide complex ( 3 b ′) lost elemental selenium with formation of the previously reported complex [PtCl2(dppn)‐P,P′] ( 3 ). Treatment of dppnSe with [(nor)Mo(CO)4] (nor = norbornadiene) led to formation of [(dppnSe)Mo(CO)4P,Se] ( 3 b ). Solutions of the latter slowly deposited Se with formation of [(dppn)Mo(CO)4P,P′] ( 4 ) which was also obtained by independent synthesis from 1 and [(nor)Mo(CO)4]. All isolated new compounds were characterised by a combination of 31P, 1H, 13C and 77Se ( 2 b ) NMR spectroscopy, IR spectroscopy, mass spectrometry and elemental analysis. Single‐crystal X‐ray structure determinations were performed for dppnSe ( 2 b ), [PtCl2(dppnS)‐P,S] ( 3 a ), [(dppnSe)Mo(CO)4P,Se] ( 3 b ) and [(dppn)Mo(CO)4P,P′] ( 4 ). In 2 b steric effects cause the naphthalene ring to be distorted and force the phosphorus atoms by 65 and 59 pm to opposite sides of the best naphthalene plane. In the metal complexes 3 a , 3 b and 4 the phosphino‐phosphinochalcogenyl systems act as bidentate ligands through the P and the chalcogen atoms. The naphthalene systems are again distorted. The two independent molecules of 4 differ in their conformations.  相似文献   

3.
Compounds bearing the structural motif of 2,6‐bis(phosphino)phenol have been synthesized via two general methods. Double lithium‐halogen exchange occurred in low‐temperature reactions of O‐protected (by methyl‐ or tetrahydropyranyl groups) 2,6‐dibromo‐4‐methylphenol derivatives with BuLi (2 equivalents); quenching the reaction mixtures with chlorophosphines ClPR2 (R = Ph, iPr) and corresponding O‐deprotection yielded symmetrically substituted 2,6‐bis(phosphino)phenols. Sequential incorporation of  PR2 functionalities was accomplished via single lithium‐halogen exchange (1 eq. of BuLi) of tetrahydropyranyl‐protected 2,6‐dibromo‐4‐methylphenol followed by ClPR2 quenches, thus enabling the syntheses of unsymmetric 2,6‐bis(phosphino)phenols. Such compounds were also obtained via sequential ortho‐lithiations of tetrahydropyranyl‐protected 4‐tert‐but ylphenol, followed by ClPR2 quenches. All of the new compounds have been characterized by spectrometric methods (1H and 31P NMR, and mass spectrometry). In addition, two of the compounds, 1‐(diphenylphosphino)‐3‐(diphenylphosphoryl)‐2‐methoxy‐5‐methylbenzene ( 3a‐ox ) and 1,3‐bis(diphenylphosphino)‐2‐methoxy‐5‐methylbenzene ( 6a ) have also been characterized via single crystal X‐ray diffraction experiments. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:656–663, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20251  相似文献   

4.
Nickel(I) Complexes with 1,1′‐Bis(phosphino)ferrocenes as Ligands The thermically stable monomeric Nickel(I) complexes [(dtbpf)Ni(acac)] ( 1 ) and [(dippf)NiCl] ( 2 ) were synthesized and characterized by elemental analyses, EPR spectroscopy, and by X‐ray crystal structure analyses of single crystals (dtbpf: 1,1′‐bis(di‐tertbutylphosphino)ferrocene; dippf: 1,1′‐bis(diisopropylphosphino)ferrocene). 1 is formed by reduction of Ni(acac)2 with triethylaluminium in the presence of dtbpf, together with the nickel(0) complex [(dtbpf)Ni(C2H4)]. 1 contains a NiI atom surrounded of two O‐ and two P donor atoms in a distorted tetrahedral coordination. 2 was obtained by reduction of [(dippf)NiCl2] with NaBH4. In 2 the nickel(I) atom adopts trigonal planar coordination.  相似文献   

5.
Although it has not proved possible to crystallize the newly prepared cyclam–methylimidazole ligand 1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane (LIm1), the trans and cis isomers of an NiII complex, namely trans‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) monohydrate, [Ni(C15H30N6)(H2O)](ClO4)2·H2O, (1), and cis‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate), [Ni(C15H30N6)(H2O)](ClO4)2, (2), have been prepared and structurally characterized. At different stages of the crystallization and thermal treatment from which (1) and (2) were obtained, a further two compounds were isolated in crystalline form and their structures also analysed, namely trans‐{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}(perchlorato)nickel(II) perchlorate, [Ni(ClO4)(C15H30N6)]ClO4, (3), and cis‐{1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) 0.24‐hydrate, [Ni(C20H36N6)](ClO4)2·0.24H2O, (4); the 1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane ligand is a minor side product, probably formed in trace amounts in the synthesis of LIm1. The configurations of the cyclam macrocycles in the complexes have been analysed and the structures are compared with analogues from the literature.  相似文献   

6.
Two pairs of enantiomeric compounds with formulas (S)‐ or (R)‐Co3(ppap)2(4,4′‐bpy)2(H2O)2 ? 4 H2O [(S)‐ 1 or (R)‐ 1 ], (S)‐ or (R)‐Co3(ppap)2(4,4′‐bpy)2(H2O)2 ? 3 H2O [(S)‐ or (R)‐ 2 ), and related racemic compound Co3(ppap)2(4,4′‐bpy)2(H2O)2 ? 4 H2O (rac‐ 3 ; 4,4′‐bpy=4,4′‐bipyridine, H3ppap=3‐phenyl‐2‐[(phosphonomethyl)amino]propanoic acid) are reported. Compounds 1 and rac‐ 3 show identical three‐dimensional framework structures, whereas compounds 2 have two‐dimensional layer structures. Compounds 1 and 2 are catenation isomers, formation of which is controlled solely by the pH of the reaction mixtures, whereas the formation of isomeric compounds 1 and rac‐ 3 is controlled purely by the chirality of the phosphonate ligand. The magnetic properties of fully dehydrated (S)‐ 1 , (S)‐ 2 , and rac‐ 3 are highly dependent on both structure and chirality.  相似文献   

7.
In the crystal structures of the conformational isomers hydrogen {phosphono[(pyridin‐1‐ium‐3‐yl)amino]methyl}phosphonate monohydrate (pro‐E), C6H10N2O6P2·H2O, (Ia), and hydrogen {phosphono[(pyridin‐1‐ium‐3‐yl)amino]methyl}phosphonate (pro‐Z), C6H10N2O6P2, (Ib), the related hydrogen {[(2‐chloropyridin‐1‐ium‐3‐yl)amino](phosphono)methyl}phosphonate (pro‐E), C6H9ClN2O6P2, (II), and the salt bis(6‐chloropyridin‐3‐aminium) [hydrogen bis({[2‐chloropyridin‐1‐ium‐3‐yl(0.5+)]amino}methylenediphosphonate)] (pro‐Z), 2C5H6ClN2+·C12H16Cl2N4O12P42−, (III), chain–chain interactions involving phosphono (–PO3H2) and phosphonate (–PO3H) groups are dominant in determining the crystal packing. The crystals of (Ia) and (III) comprise similar ribbons, which are held together by N—H...O interactions, by water‐ or cation‐mediated contacts, and by π–π interactions between the aromatic rings of adjacent zwitterions in (Ia), and those of the cations and anions in (III). The crystals of (Ib) and (II) have a layered architecture: the former exhibits highly corrugated monolayers perpendicular to the [100] direction, while in the latter, flat bilayers parallel to the (001) plane are formed. In both (Ib) and (II), the interlayer contacts are realised through N—H...O hydrogen bonds and weak C—H...O interactions involving aromatic C atoms.  相似文献   

8.
A pressure‐controlled procedure for the SN1 reaction of rac‐1‐[(dimethylamino)methyl]‐2‐(tributylstannyl)ferrocene ( 1 ) to rac‐1‐(phthalimidomethyl)‐2‐(tributylstannyl)ferrocene ( 2 ) was developed. Pd0‐Catalyzed Stille coupling of 2 with iodobenzene afforded rac‐1‐phenyl‐2‐(N‐phthalimidomethyl)ferrocene ( 5 ) in 74% yield; after trace enrichment by crystallization of the combined mother liquors, one single crystal of each, 5 , catalysis intermediate trans‐iodo(σ‐phenyl)bis(triphenylarsino)palladium(II) ( 7 ), trans‐diiodobis(triphenylarsino)palladium(II) ( 8 ), and rac‐2,2′‐bis(phthalimidomethyl)‐1,1′‐biferrocene ( 9 ) could be isolated by crystal sorting under a microscope and characterized by X‐ray crystal structure analysis. Furthermore, 5 was deprotected to amine ( 11 ), which does even survive the Birch reduction to rac‐1‐(aminomethyl)‐2‐(cyclohexa‐2,5‐dienyl)ferrocene ( 12 ).  相似文献   

9.
An α‐diimine Pd(II) complex containing chiral sec‐phenethyl groups, {bis[N,N′‐(4‐methyl‐2‐sec‐phenethylphenyl)imino]‐2,3‐butadiene}dichloropalladium (rac‐ C1 ), was synthesized and characterized. rac‐ C1 was applied as an efficient catalyst for the Suzuki–Miyaura cross‐coupling reaction between various aniline halides and arylboronic acid in PEG‐400–H2O at room temperature. Among a series of aniline halides, rac‐ C1 did not catalyze the cross‐coupling of aniline chlorides and fluorides but efficiently catalyzed the cross‐coupling of aniline bromides and iodides with phenylboronic acid. The catalytic activity reduced slightly with increasing steric hindrance of the aniline bromides. The complexes {bis[N,N′‐(4‐fluoro‐2,6‐diphenylphenyl)imino]‐2,3‐butadiene}dichloropalladium and {bis[N,N′‐(4‐fluoro‐2,6‐diphenylphenyl)imino]acenaphthene}dichloropalladium were also found to be efficient catalysts for the reaction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In the title complex, [Zn(C12H6O4)(H2O)]n, a ZnII polymer based on naphthalene‐1,8‐dicarboxylate (1,8‐nap), the ZnII atoms adopt an elongated octahedral coordination geometry. A zigzag chain is formed by μ2‐aqua ligands and μ2‐carboxylate groups of the 1,8‐nap ligands. Adjacent parallel chains are further linked by 1,8‐nap ligands, forming a twisted two‐dimensional layer structure along the (100) plane.  相似文献   

11.
The crystal structures of 4,5‐bis(bromomethyl)‐1,3‐dithiol‐2‐one, C5H4Br2OS2, (I), and 4,5‐bis[(dihydroxyphosphoryl)methyl]‐1,3‐dithiol‐2‐one, C5H8O7P2S2, (II), occur with similar unit cells in the same monoclinic space group. Both molecules reside on a twofold symmetry axis coincident with the C=O bond, so that the substituents in the 4‐ and 5‐positions project above and below the plane of the 1,3‐dithiol‐2‐one ring. In both structures, the molecules align themselves in a head‐to‐tail fashion along the b axis, and these rows of molecules then stack, with alternating directionality, along the c axis. For (II), an extensive network of intermolecular hydrogen bonds occurs between molecules within the same stack and between adjacent stacks. Each –CH2P(O)(OH)2 group participates in four hydrogen bonds, twice as donor and twice as acceptor.  相似文献   

12.
The title compounds, namely 2,6‐bis[(1,3‐dimethylimidazolin‐2‐ylidene)amino]pyridinium perchlorate, C15H24N7+·ClO4, (I), and bis{2,6‐bis[(1,3‐dimethylimidazolin‐2‐ylidene)amino]pyridinium} μ‐oxido‐bis[trichloridoiron(III)], (C15H24N7)2[Fe2Cl6O], (II), are structurally unusual examples of the organization of molecular units via base pairing. The cations in salts (I) and (II) are derived from the bisguanidine N2,N6‐bis(1,3‐dimethylimidazolin‐2‐ylidene)pyridine‐2,6‐diamine, which associates in centrosymmetric pairs via two N—H...N hydrogen‐bond interactions. N—H...N bridges are formed between the protonated pyridine N atom and one of the nonprotonated guanidine N atoms, with N...H distances of 2.01 (1)–2.10 (1) Å. Compound (I) contains two crystallographically independent cations and anions per asymmetric unit. One of the perchlorate anions is disordered, while the [Fe2Cl6O]2− anion lies on an inversion centre.  相似文献   

13.
The structure of the title compound, C14H19N2+·C9H3Cl6O4?·H2O, consists of singly ionized 1,4,5,6,7,7‐hexachlorobicyclo[2.2.1]hept‐5‐ene‐2,3‐dicarboxylic acid anions and protonated 1,8‐bis(dimethylamino)naphthalene cations. In the (8‐dimethylamino‐1‐napthyl)dimethylammonium cat­ion, a strong disordered intramolecular hydrogen bond is formed with N?N = 2.589 (3) Å. The geometry and occupancy obtained in the final restrained refinement suggest that the disordered hydrogen bond may be asymmetric. Water mol­ecules link the anion dimers into infinite chains via hydrogen bonding.  相似文献   

14.
When treated with LiNiPr2 (LDA) at ?78°, 1‐[(methylsulfanyl)methyl]‐2‐[(1Z,3E)‐4‐phenylbuta‐1,3‐dien‐1‐yl]benzene easily cyclized to form benzocycloheptenyl anion, which successively underwent intramolecular nucleophilic substitution to give a cyclopropanaphthalene. Similar LDA‐mediated cyclization also occurred for 4‐phenyl‐ or 4‐methyl‐substituted 1‐[2‐(methoxymethyl)phenyl]buta‐1,3‐dienes to furnish the corresponding benzocycloheptenes and cyclopropanaphthalenes. A 4‐tert‐butyl analog also underwent LDA‐mediated cyclization to give a benzocycloheptene, but not a cyclopropanaphthalene.  相似文献   

15.
Synthesis and characterization of bis[2‐(arylimino)‐1,3‐thiazolidin‐4‐ones] are described. The one‐pot, pseudo‐five‐component reaction of an aliphatic diamine, isothiocyanatobenzene, and dialkyl but‐2‐ynedioate at room temperature in anhydrous CH2Cl2 gives the title compound in relatively high yield. Under the same conditions, aromatic 1,2‐diamines yield 2‐(arylimino)‐N‐(enaminoaryl)‐1,3‐thiazolidin‐4‐ones in a pseudo‐four‐component reaction. Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization is proposed (Scheme 3).  相似文献   

16.
Two new half‐sandwich η5‐Cp*–rhodium(III) and η5‐Cp*–ruthenium(II) complexes have been prepared from corresponding bis(phosphino)amine ligands, thiophene‐2‐(N,N‐bis(diphenylphosphino)methylamine) or furfuryl‐2‐(N,N‐bis(diphenylphosphino)amine). Structures of the new complexes have been elucidated by multinuclear one‐ and two‐dimensional NMR spectroscopy, elemental analysis and IR spectroscopy. These Cp*–rhodium(III) and Cp*‐ruthenium(II) complexes bearing bis(phosphino)amine ligands were successfully applied to transfer hydrogenation of various ketones by 2‐propanol. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Hydro‐Alumination: Synthesis, Structure, and Properties of 1‐Methyl‐ cis ‐1‐azonia‐5‐alabicyclo[3.3.0]octane and of the Alan‐triallylamine Adduct The alan‐N‐methyl‐diallylamine adduct ( I ) was obtained by the reaction of N,N‐diallyl‐methyl‐ammoniumchloride with LiAlH4. Subsequently the reaction product was transformed by intramolecular hydro‐alumination reaction into bis(1‐methyl‐cis‐1‐azonia‐5‐alabicyclo[3.3.0]octane) ( II ). In contrast to I , the bis(alan‐triallylamine) adduct ( III ) does not undergo an analogous hydro‐alumination reaction. The compounds I , II and III were characterized by MS, IR, 1H‐, 13C‐ and 27Al‐NMR spectroscopy, and the X‐ray structures of II and III are reported and discussed.  相似文献   

18.
2‐Aryl‐4,5,6,7‐tetrahydro‐1,2‐benzisothiazol‐3(2H)‐ones 1a – e were synthesized by cyclocondensation of 2‐(thiocyanato)cyclohexene‐1‐carboxanilides 9 as a convenient new method. Their S‐oxides 10 were prepared by two routes, either by oxidation of 1 or dehydration of rac‐cis‐3‐hydroperoxysultims 11 . Furthermore, compounds 1 have been identified by HPLC? API‐MS‐MS as intermediates in the oxidation process of the salts 6 . The hydroperoxides 12b and rac‐trans‐ 11b have been unambiguously detected by HPLC? MS investigations and in the reaction of rac‐cis‐ 13b with H2O2 to the hydroperoxides rac‐trans‐ 11b and rac‐cis‐ 11b .  相似文献   

19.
In this study, (5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐carboxylic acid hydrazide ( 5 ) was synthesized by the condensation of methyl (5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐carboxylate ( 4 ) with NH2NH2⋅H2O. The (5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐carboxylic acid 2‐[(arylamino)carbonyl]hydrazides 6a – 6q were prepared by the reaction of 5 with corresponding substituted aryl isocyanates, and the N‐{5‐[(5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐yl]‐1,3,4‐oxadiazol‐2‐yl}arenamines 7a – 7q were obtained via the cyclization reaction of 6a – 6q in the presence of POCl3. The synthesized compounds have a rigid morphine structure, including the 6,14‐endo‐etheno bridge and the 5‐(arylamino)‐1,3,4‐oxadiazol‐2‐yl residue at C(7) adopting the (S)‐configuration (7α). The structures of the compounds were confirmed by high‐resolution mass spectrometry (HR‐MS) and various spectroscopic methods such as FT‐IR, 1H‐NMR, 13C‐NMR, APT, and 2D‐NMR (HETCOR, COSY, INADEQUATE).  相似文献   

20.
The isothiazolium salts 10 , easily accessible by cyclocondensation of the thiocyanates 8 with the anilines 9 , yielded with H2O2 as the oxidant the first stable hydroperoxides of the 2‐aryl‐2,3‐dihydroisothiazole 1‐oxides rac‐cis‐ 13 , the 1,1‐dioxides 15 , and their reduced 3‐hydroxy derivatives rac‐cis‐ 14 and 16 , respectively. The oxidation of 10 to new isothiazol‐3(2H)‐one 1,1‐dioxides ( 17 ) is also described. For the first time, an aryl‐bridged bis[isothiazolium salt] 11 was synthesized and oxidized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号