首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benzyl-tris(trimethylsilyl)methyl Tin Dihalides, {(CH3)3Si}3C(C6H5–CH2)SnHal2 with Hal = Cl, Br, I The tin tetrahalides SnHal4 (Hal = Cl, Br, I) react with base-free tris(trimethylsilyl)methyllithium (Tsi–Li) solved in toluene to form the trihalides Tsi–SnHal3. But when the reaction is carried out in a 1 : 2 molar ratio at 60 °C in toluene, Tsi–H, Tsi–Hal and benzyl-trisyl tin-dihalides are formed in good yields, respectively. The nmr (1H, 13C, 29Si, 119Sn) and the Raman spectra are discussed, the X-ray structure analyses of the dibromide as well as the diiodide have been measured.  相似文献   

2.
[{(CH3)3Si}3C–Li–C{Si(CH3)3}3][Li · 3(OC4H8)] and {(CH3)3Si}3C–Li · O=C(Si(CH3)3)2, two New Adducts of Lithium Trisylmethanide Sublimation of (Tsi–Li) · 2 THF (Tsi = –C(Si(CH3)3)3) at 180 °C and 10–4 hPa gives (Tsi–Li) · 1.5 THF in very low yield. The X‐ray structure determination shows an almost linear [Tsi–Li–Tsi] anion connected by short agostic Li…C contacts with the threefold THF‐coordinated Li‐cation. Base‐free Tsi–Li, solved in toluene is decomposed by oxygen, forming the strawberry‐colored ketone O=C(SiMe3)2, which forms an 1 : 1 adduct with undecomposed Tsi–Li. The X‐ray structure elucidation of this compound is also discussed.  相似文献   

3.
The Crystal Structure of [Li · 11/3 H2O · C7H8][{(CH3)3Si}3C–GaI3], a Stable Hydrate of Lithium Tris(trimethylsilyl)methyl Triiodogallate Water‐free Li[Tsi–GaI3], prepared from gallium triiodide and base‐free Tsi–Li (Tsi = –C(SiMe3)3) in toluene, which has been recrystallized several times from humid toluene, c‐hexane, benzene and toluene again gives the water‐containing title compound. According to the X‐ray structure determination this product crystallizes in the monoclinic space group P21/c and consists of three‐membered units of [Tsi–GaI3]‐anions forming an asymmetric triangle and a related chain of three Li cations, four fold but dissimilar coordinated by the oxygen atoms of 4 water molecules, the iodligands of different anions and a h2‐bonded toluene molecule, respectively.  相似文献   

4.
Tris(trimethylsilyl)silylamine and the lithiated and silylated Derivatives — X-Ray Structure of the dimeric Lithium Trimethylsilyl-[tris(trimethylsilyl)silyl]amide The ammonolysis of the chlor, brom or trifluormethanesulfonyl tris(trimethylsilyl)silane yields the colorless tris(trimethylsilyl)silylamine, destillable at 51°C and 0.02 Torr. The subsequent lithiation, reaction with chlor trimethylsilane and repeated lithiation lead to the formation of lithium tris(trimethylsilyl)silylamide, trimethylsilyl-[tris(trimethylsilyl)silyl]amine and finally lithium trimethylsilyl-[tris(trimethylsilyl)silyl]amide, which crystallizes in the monoclinic space group P21/n with a = 1 386.7(2); b = 2 040.2(3); c = 1 609.6(2) pm; β = 96.95(1)° and Z = 4 dimeric molecules. The cyclic Li2N2 moiety with Li? N bond distances displays a short transannular Li …? Li contact of 229 pm. The dimeric molecule shows nearly C2-symmetry, so that one lithium atom forms agostic bonds to both the trimethylsilyl groups, the other one to the tris(trimethylsilyl)silyl substituents. However, the 7Li{1H}-NMR spectrum displays a high field shifted singlet at —1.71 ppm. The lithiation of trimethylsilyl-[tris(trimethylsilyl)silyl]amine leads to a high field shift of the 29Si{1H} resonance of about 12 ppm for the Me3SiN group, whereas the parameters of the tris(trimethylsilyl)silyl ligand remain nearly unaffected.  相似文献   

5.
Metal Derivatives of Molecular Compounds. IV Synthesis, Structure, and Reactivity of Lithium [Tris(trimethylsilyl)silyl]tellanide · DME Lithium tris(trimethylsilyl)silanide · 1,5 DME [3] and tellurium react in 1,2-dimethoxyethane to give colourless lithium [tris(trimethylsilyl)silyl]tellanide · DME ( 1 ). An X-ray structure determination {-150 · 3·C; P21/c; a = 1346.6(4); b = 1497.0(4); c = 1274.5(3) pm; β = 99.22(2)·; Z = 2 dimers; R = 0.030} shows the compound to be dimeric forming a planar Li? Te? Li? Te ring with two tris(trimethylsilyl)silyl substituents in a trans position. Three-coordinate tellurium is bound to the central silicon of the tris(trimethylsilyl)silyl group and to two lithium atoms; the two remaining sites of each four-coordinate lithium are occupied by the chelate ligand DME {Li? Te 278 and 284; Si? Te 250; Li? O 200 pm (2X); Te? Li? Te 105°; Li? Te? Li 75°; O? Li? O 84°}. The covalent radius of 154 pm as determined for the DME-complexed lithium in tellanide 1 is within the range of 155 ± 3 pm, also characteristic for similar compounds. In typical reactions of the tellanide 1 [tris(trimethylsilyl)silyl]tellane ( 2 ), methyl-[tris(trimethylsilyl)silyl]tellane ( 4 ) and bis[tris(trimethylsilyl)silyl]ditellane ( 5 ) are formed.  相似文献   

6.
Metal Derivatives of Molecular Compounds. III. Molecular and Crystal Structure of Lithium bis(trimethylsilyl)phosphide · DME and of Lithium dihydrogenphosphide · DME Lithium bis(trimethylsilyl)phosphide · DME 1 prepared from tris(trimethylsilyl)-phosphine and lithium methanide [2, 4] in 1,2-dimethoxyethane
  • 1 1,2-Dimethoxyethan (DME); Tetrahydrofuran (THF); Bis[2-(dimethylamino)ethyl]methyl-amin (PMDETA).
  • , crystallizes in the orthorhombic space group Pnnn {a = 881.1(9); b = 1308.5(9); c = 1563.4(9) pm at ?120 ± 3°C; Z = 4 formula units}, lithium dihydrogenphosphide · DME 2 [10] prepared from phosphine and lithium- n -butanide in the same solvent, in P2 1 2 1 2 1 {a = 671.8(1); b = 878.6(1); c = 1332.2(2) pm at ?120 ± 3°C; Z = 4 formula units}. X-ray structure determinations (R w = 0.036/0.045) show the bis(trimethylsilyl) derivative 1 to be dimeric with a planar P? Li? P? Li ring (P? Li 256 pm; Li? P? Li 76°; P? Li? P 104°), and the dihydrogenphosphide 2 to be polymeric with a linear Li? P? Li fragment (P? Li 254 to 260 pm; Li? P? Li 177°; P? Li? P 118°). The shortened P? Si distance (221 pm) of compound 1 and the structure of the PH 2 group in 2 are discussed in detail. Lithium obtains its preferred coordination number 4 by a chelation with one molecule of 1,2-dimethoxyethane (Li? O 202 to 204 pm).  相似文献   

    7.
    New Hypersilanides of the Earth Metals Aluminium, Gallium, and Indium The dialkylaluminiumchlorides R2AlCl (with R = Me, Et; Me = CH3, Et = C2H5) react with base‐free lithium‐tris(trimethylsilyl)silanide (Li–Hsi; Hsi = –Si(SiMe3)3), forming the pyrophoric dialkyl aluminiumhypersilanides R2Al–Hsi. The methyl compound is dimeric in solid state (triclinic space group P1, Z = 1 dimer), as in Al2Me6 the association takes place by two Al–Me–Al bridges, forming a centrosymmetric molecule of approximately C2h point‐symmetry. Contrary to this (Me2GaCl)2 and Li–Hsi form a mixture of (MeGa(Hsi)Cl)2 and [Me3Ga–Hsi]Li. The monochloride again is a centrosymmetric, chlorine‐bridged dimer (monoclinic space group P21/n, Z = 2 dimers). The extremely air sensitive gallate can be prepared from GaMe3 and Li–Hsi (1 : 1 ratio), as well as the homologous [Me3Ga–Hsi]Na and [Me3Ga–Hsi]K from GaMe3 and the corresponding alkalimetal hypersilanides. The 1 : 1 toluene‐solvat of the sodium salt crystallizes in the orthorhombic space group Pbca (Z = 8) with polymeric zig‐zag‐chains, in which the toluene‐capped Na‐ions act as GaMe…Na…Me2Ga‐bridges between [Me3Ga–Hsi] anions. The reaction of InCl3 with Li–Hsi (1 : 3 ratio) mainly gives LiCl, metallic In and the “dihypersilyl” Hsi–Hsi. Ruby‐red (Hsi)2In–In(Hsi)2 could also be obtained in low yield and characterized by X‐ray structure elucidation (space group P21/c, Z = 4). The 1H, 13C, 29Si and 7Li NMR‐ and the vibrational spectra of the hypersilanides have been measured and discussed.  相似文献   

    8.
    Synthesis and Structure of Lithium Tris(trimethylsilyl)silanide · 1,5 DME Lithium tris(trimethylsilyl)silanide · 1,5 DME 2a synthesized from tetrakis(trimethylsilyl)silane 1 [6] and methyllithium in 1,2-dimethoxyethane , crystallizes in the monoclinic space group P21/c with following dimensions of the unit cell determined at a temperature of measurement of ?120 ± 2°C: a = 1 072.9(3); b = 1 408.3(4); c = 1 775.1(5) pm; β = 107.74(2)°; 4 formula units (Z = 2). An X-ray structure determination (Rw = 0.040) shows the compound to be built up from two [lithium tris(trimethylsilyl)silanide] moieties which are connected via a bridging DME molecule. Two remaining sites of each four-coordinate lithium atom are occupied by a chelating DME ligand. The Li? Si distance of 263 pm is considerably longer than the sum of covalent radii; further characteristic mean bond lengths and angles are: Si? Si 234, Li? O 200, O? C 144, O?O (biß) 264 pm; Si? Si? Si 104°, Li? Si? Si 107° to 126°; O? Li? O (inside the chelate ring) 83°. Unfortunately, di(tert-butyl)bis(trimethylsilyl)silane 17 prepared from di(tert-butyl)dichlorsilane 15 , chlorotrimethylsilane and lithium, does not react with alkyllithium compounds to give the analogous silanide.  相似文献   

    9.
    The title compound is formed together with Li[Tsi‐InI3] (the main product), (Tsi‐In(Me)I)2 and (Tsi)2InMe in very low yield in the reaction of InI3 with Tsi‐Li (Tsi = ‐C(Si(CH3)3)3)in toluene. According to the X‐ray structure determination this compound crystallizes in the triclinic space group P&1marc; and consists of slightly associated dimers of [Tsi‐InI3] anions via weak InI···I(‐InIII) contact‐bonds of 345.6(1) to 373.8(2) pm. Additionally the InI atom is capped by a D6‐benzene molecule.  相似文献   

    10.
    Reactions of the Dielement Compounds R2E–ER2 [E = Ga, In; R = CH(SiMe3)2] with Lithium Phenylethynide – Formation of Adducts by Retention of the E–E Bonds Lithium phenylethynide reacted with the dielement compounds tetrakis[bis(trimethylsilyl)methyl]digallane(4) ( 2 ) and diindane(4) ( 3 ) as a Lewis‐base and gave by the addition of one ethynido ligand to one of the Lewis‐acidic central atoms the anionic adducts 4 and 5 with intact Ga–Ga and In–In single bonds. Thus, compounds were formed, in which tricoordinated, coordinatively unsaturated Ga or In atoms are neighbored to tetracoordinated, coordinatively saturated ones. The E–E bonds [255.83 pm in 4 (Ga–Ga) and 285.24 pm in 5 (In–In)] are only slightly lengthened compared to those of the starting compounds 2 and 3 . A dynamic behavior with a fast change of the position of the ethynido ligand was observed for both compounds in solution at room temperature.  相似文献   

    11.
    Investigations on the Insertion of Carbenes into Al–Al, Ga–Ga, and In–In Bonds Tetrakis[bis(trimethylsilyl)methyl]dialane(4) 1 reacts with methylthiomethyl lithium LiCH2SMe by the formation of lithium thiomethanolate LiSMe and the insertion of the remaining carbene CH2 into its Al–Al single bond. A chelating Lewis acid is formed exhibiting a central R2Al–CH2–AlR2 group with two coordinatively unsaturated Al atoms, which coordinate the thiomethanolate anion by Al–S bonds. The product (μ-methylene)(μ-thiomethanolato)bis{bis[bis(trimethylsilyl)methyl]aluminate} ( 4 ) was characterized by a crystal structure determination and has a strongly folded Al2CS heterocycle in the molecular core. In contrast, the corresponding compounds with Ga–Ga or In–In bonds show on treatment with methylthiomethyl lithium a fragmentation, and the carbene intermediate could not be detected in both isolated products, which were identified as [R2E(CH2SMe)2][Li(TMEDA)] (E = Ga: 5 ; E = In: 6 ) and LiCH(SiMe3)2 probably formed by a metal exchange reaction.  相似文献   

    12.
    Metal Derivatives of Molecular Compounds. V. Synthesis and Structure of Hexakis{lithium-[tris(trimethylsilyl)silyl]tellanide}—Cyclopentane (1/1) . Lithium [tris(trimethylsilyl)silyl]tellanide—DME (1/1) [1 b] prepared from lithium tris(trimethylsilyl)silanide—DME (2/3) [3] and tellurium, reacts with hydrogen chloride in toluene to form [tris(trimethylsilyl)silyl]tellane ( 1 ) [1 b]. Subsequent metalation of this compound with lithium n-butanide gives lithium [tris(trimethylsilyl)silyl]tellanide ( 2 ) free of coordinating solvent. Pale yellow crystals are obtained from cyclopentane solution. An X-ray structure determination {P1 ; a = 1 558.5(7); b = 1 598.4(8); c = 1 643.5(6) pm; α = 117.64(4); β = 91.63(3); γ = 117.19(3)°; Z = 1; R = 0.032} shows them to be the (1/1) packing complex ( 2 ′) of hexakis{lithium-[tris(trimethylsilyl)silyl]tellanide} and disordered cyclopentane molecules —{Li? Te? Si[Si(CH3)3]3}6 · C5H10.  相似文献   

    13.
    Reactions of some Methylmetal Halides of Aluminium, Gallium, and Indium with Hexamethyldisilazane MeAlCl2 or MeGaBr2, and bis(trimethylsilyl)amine form the dimeric, mixed-substituted ring molecules (Me(Hal)MIII–N(H)SiMe3)2 and one equivalent Me3SiHal. The NMR (1H, 13C, 29Si) and vibrational spectra (IR, Raman) are measured and the X-ray structure analysis of the compound with MIII = Al and Hal = Cl, has been done as well. Me2AlCl with an excess of HN(SiMe3)2 forms the expected amide (Me2Al–N(H)SiMe3)2, the homologue Me2GaCl with HMDS, however, gives at 50–55 °C only the cyclic (1 : 1) adduct (Me2Ga–N(H)SiMe3) · (Me2GaCl). This complex crystallizes in the space group Cmc21, the unit cell consists of four binucleate molecules with folded Ga–N–Ga–Cl-ring skeletons.  相似文献   

    14.
    An unprecedented, super oxidized all‐ferric iron–sulfur cubanoid cluster with all terminal thiolates, Fe4S4(STbt)4 ( 3 ) [Tbt=2,4,6‐tris{bis(trimethylsilyl)methyl}phenyl], has been isolated from the reaction of the bis‐thiolate complex Fe(STbt)2 ( 2 ) with elemental sulfur. This cluster 3 has been characterized by X‐ray crystallography, zero‐field 57Fe Mössbauer spectroscopy, cyclic voltammetry, and other relevant physico‐chemical methods. Based on all the data, the electronic ground state of the cluster has been assigned to be Stot=0.  相似文献   

    15.
    Lithium–sulfur (Li–S) batteries have shown great potential as high energy‐storage devices. However, the stability of the Li metal anode is still a major concern. This is due to the formation of lithium dendrites and severe side reactions with polysulfide intermediates. We herein develop an anode protection method by coating a Nafion/TiO2 composite layer on the Li anode to solve these problems. In this architecture, Nafion suppresses the growth of Li dendrites, protects the Li anode, and prevents side reactions between polysulfides and the Li anode. Moreover, doped TiO2 further improves the ionic conductivity and mechanical properties of the Nafion membrane. Li–S batteries with a Nafion/TiO2‐coated Li anode exhibit better cycling stability (776 mA h g?1 after 100 cycles at 0.2 C, 1 C=1672 mA g?1) and higher rate performance (787 mA h g?1 at 2 C) than those with a pristine Li anode. This work provides an alternative way to construct stable Li anodes for high‐performance Li–S batteries.  相似文献   

    16.
    Base-free Tris(trimethylsilyl)methyl Derivatives of Lithium, Aluminium, Gallium, and Indium Base-free LiR* (R*=-C(SiMe3)3) has been prepared from R*Cl and Li-metal in toluene at 85?90°C and used to synthesize the metallanes R*MMe2 with M = Al, Ga and In, respectively. The NMR (1H, 13C, 29Si) and the vibrational spectra of these trisyl compounds have been discussed. AlCl3 and LiR*(ratio 1 : 1) forms the metallate metallate Li[R*AlCl3]. The triclinic unit cell (space group P1 ) consists of a centrosymmetric assoziate, formed by four Li[R*AlCl3]- units with Al? Cl…?Li bridges, two pairs of Li-atoms differing in their chlorine-coordination and two disordered toluene molecules, inserted in the crystal lattice (R1wR2 =0,0444/0,1072). The reaction of GaCl3 with LiR* (I :1) gives the unusual sesquichloride (R*Ga(Cl1,33)Me0,67)3 in moderate yield. The X-ray structure determination shows a Ga3Cl3-skeleton with chairconformation and disordered, terminal gallium ligands (R1/wR2= 0,0646/0,2270).  相似文献   

    17.
    We have investigated the coordination of alkanide and alkynide anions to the coordinatively unsaturated aluminium atoms of the methylene‐bridged dialuminium compound R2Al‐CH2‐AlR2 [ 1 , R = CH(SiMe3)2]. Treatment of 1 with the corresponding lithium derivatives in the presence of a small excess of TMEN (TMEN = tetramethylethylenediamine) yielded mono‐adducts [M]+[R2Al‐CH2‐AlR2R'] [ 2a , M = Li(TMEN)2, R' = Me; 2b , M = Li(TMEN)2, R' = n‐Bu; 3a , M = Li(TMEN)2, R' = C≡C‐SiMe3; 3b , M = Li(TMEN)2, R' = C≡C‐t‐Bu; 3d , M = Li(DME)3, R' = C≡C‐Ph; 3e , M = Li(TMEN)2, R' = C≡C‐PPh2)] and bis‐adducts [Li(TMEN)2]+[LiCH2(AlR2R')2] [ 4a , R' = C≡C‐CH2‐NEt2; 4b , R' = C≡C‐t‐Bu]. In the solid state the mono‐adducts have clearly separated coordinatively saturated (coordination number four) and unsaturated aluminium atoms (coordination number three). In solution the groups R' show a fast exchange between both aluminium atoms as evident from the room temperature NMR spectra that showed in most cases equivalent CH(SiMe3)2 groups despite different coordination spheres of the metal atoms. Only 2b gave the expected splitting of resonances at ambient temperature, while cooling was required to prevent the dynamic process for 3a . The dialkynide 4a has a unique molecular structure with one of the lithium cations bonded to the α‐carbon atoms of the alkynido ligands and to the carbon atom of the methylene bridge which is five‐coordinate with a distorted trigonal bipyramidal coordination sphere.  相似文献   

    18.
    Halide Ions as Catalyst: Metalcentered C–C Bond Formation Proceeded from Acetonitril AlMe3 reacts at 20 ?C in acetonitrile to the complex [Me3Al(NCMe)] ( 1 ). By addition of cesium halides (X = F, Cl, Br) a trimerisation to the heterocycle [Me2Al{HNC(Me)}2C(CN)] ( 2 ) has been observed. The reaction might be carried out under catalytic conditions (1–2 mol% CsX). The gallium complex [Me2Ga{HNC(Me)}2 · C(CN)] ( 3 ), generated under similar reaction conditions, can be converted to the silylated compound [Me2Ga{Me3SiNC(Me)}2C(CN)] ( 4 ) by successive treatment with two equivalents n‐butyllithium and Me3SiCl. 3 reacts under hydrolysis conditions (1 M hydrochloric acid) to the iminium salt [{H2NC(Me)}2C(CN)]Cl ( 5 ). A mixture of H2O, Ph2PCl and 3 in THF/toluene leads in a unusual conversion to the diphospane derivative [Ph2P–P(O)(Me2GaCl)] ( 6 ). 1 , 2 , 4 , 5 and 6 have been characterized by NMR, IR and MS techniques. X‐ray structure analyses were performed with 1 , 2 , 4 and 6 · 0.5 toluene. According this 1 possesses an almost linear axis AlNCC [Al1–N1–C3: 179,5(2)?; N1–C3–C4: 179,7(4)?]. 2 is an AlN2C3 six‐membered heterocycle with two iminium fuctions. One N–H group is responsible for a intermolecular chain‐formation through hydrogen bridges to an adjacent nitrile group along the direction [010]. The basic structural motif of the heterocycle 3 has been maintained after silylation to 4 . In 6 · 0.5 toluene an unit Me2GaCl, originated from 3 , is coordinated to the oxygen atom of the diphosphane oxide Ph2P–P(O)Ph2.  相似文献   

    19.
    Lithium and sodium tris(trimethylsilyl)silanolates were obtained by the reaction of tris(trimethylsilyl)silanol with BunLi or PriONa in hexane. The degree of association of silanolates in benzene solution was found to be 2 and 4 for the sodium and lithium derivatives, respectively. (Me3Si)3SiONa is noticeably more active than the lithium derivative in the reaction with Me3SiCl. Tris(trimethylsilyl)silanol reacts with trimethylchlorosilane to give (Me3Si)3SiCl. The hydrolysis of (Me3Si)3SiONa (Li) in benzene and hexane yields the corresponding silanol, whereas in HMPA the splitting of Si-Si bonds and hydrogen evolution were observed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1146–1149, June, 1995.This work was carried out with financial support from the International Scientific and Technical Center (Project No 015-94).  相似文献   

    20.
    Monomeric Dialkyl Metal Complexes of the R2M(NR′)2XR Type with M = Al, Ga, In, Tl; X = S, C and R, R′ = Alkyl and Silyl N,N′-Bis(trimethylsilyl)sulfurdiimide reacts with the trimethyl derivatives of aluminium, gallium, and indium within insertion. Hereby monomeric sulfinic acid imidamidates Me2M(NSiMe3)2SMe (Me = CH3) are formed. The lithium amidinates Li(NR′)2CMe (R′ = i-C3H7 and SiMe3) are formed likewise by insertion reactions with LiMe and the corresponding carbodiimides R′N?C?NR′ and were used in reactions with R2MCl (M = Al to Tl) to synthesize dialkyl metal amidinates R2M(NR′)2CMe. The NMR (1H and 13C) and the vibrational spectra (IR and Raman) are discussed and applied to describe the structure of these chelat complexes.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号