首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Synthesis and Molecular Structure of the Heterobimetallic Sulfidoacetato‐bridged Zr, Mo Complex [Cp°2Zr(OOCCH2S‐κ2O, S)(μ‐O‐OOCCH2S‐κ1O, κ2O′, S)(MoCp′2)] (Cp° = C5EtMe4, Cp′ = C5MeH4) The reaction of [Cp°2Zr(OOCCH2SH‐κ1O)(OOCCH2SH‐κ2O, O′)] with [Cp′2MoH2] yields the dinuclear ZrIV/MoIV complex [Cp°2Zr(OOCCH2S‐κ2O, S)(μ‐O‐OOCCH2S‐κ1O, κ2O′, S)(MoCp′2)] ( 1 ) (Cp° = C5EtMe4, Cp′ = C5MeH4). For comparison of NMR data, [Cp′2Mo(OOCCH2S‐κ2O, S)] ( 2 ) was prepared from [Cp′2MoH2] and mercaptoacetic acid. 1 and 2 were characterized spectroscopically (1H, 13C NMR and IR) and a crystal structure determination was carried out on 1 .  相似文献   

2.
Syntheses of the array of heterobimetallic complexes [(OC)3M(μ‐PPh2)2(μ‐OC(CHMe(CH2)2PPh2)RhL], M = Cr, Mo, W, L = tBuNC, are described, extending the previous study of the counterpart array for L = CO. A single crystal X‐ray structure determination is reported for the M = Mo adduct, enabling comparison with its previously reported L = CO counterpart, for which an improved redetermination is also reported. In the present complex the tBuNC ligand is found to be much more weakly bound (Rh‐C 2.026(5) Å) than the carbonyl group it displaces (Rh‐C 1.945(2) Å) with concomitant minor impact on the remainder of the rhodium ambience.  相似文献   

3.
Synthesis and Molecular Structure of [1,3-(Me3Si)2C5H3](Me3SiC5H4)ZrCl2 . The unsymmetrically substituted zirconocene dichloride was prepared by reaction of trimethylsilylcyclopentadienyl lithium and 1,3-bis(trimethylsilyl)cyclopentadienyl lithium with ZrCl4 · 2 THF. The molecular structure was determined (P21/a; a = 1 357.9, b = 1 900.0, c = 1 043.2 pm, β = 105,16°). The Zr? Cl distance are remarkably short.  相似文献   

4.
Insertion and Substitution Reaction of Methyl Formate with [Cp′2ZrCl(PHTipp)] – Molecular Structure of meso‐trans ‐[Cp′2ZrCl{OCH(PHTipp)2}] (Cp′ = η5‐C5MeH4, Tipp = 2,4,6‐Pri3C6H2) [Cp′2ZrCl(PHTipp)] ( 1 ) (Cp′ = η5‐C5MeH4, Tipp = 2,4,6‐Pri3C6H2) reacts with methyl formate with insertion and substitution to give [Cp′2ZrCl{OCH(PHTipp)2}] ( 2 ). 2 was characterized spectroscopically (1H, 31P NMR, IR, MS) and by X‐ray structure determination. Only the meso‐trans isomer is present in the solid state.  相似文献   

5.
Crystal Structure of the Molybdenum(V) Complex [MoCl3(NtBu)(H2NtBu)]2 · 1/2 C7H8 Green moisture sensitive single crystals of [MoCl3(NtBu)(H2NtBu)]2 ( 1 · 1/2 C7H8) have been prepared from molybdenum pentachloride with Me2Si(HNtBu)2 in toluene solution; they were suitable for a crystal structure determination. 1 · 1/2 C7H8: Space group P 1, Z = 2, lattice dimensions at –83 °C: a = 696.9(1), b = 1470.9(2), c = 1579.0(2) pm, α = 96.673(13)°, β = 92.014(14)°, γ = 94.852(14)°, R = 0.0321. 1 forms centrosymmetric molecules in which the molybdenum atoms are linked by two μ‐Cl‐bridges with MoCl bond lengths of 245.7 and 270.2 pm in average of the two crystallographically independent individuals. The longer MoCl bond is in trans‐position to the nitrogen atom of the imido ligand (MoN distance 169.0 pm, MoNC bond angle 167.0° in average).  相似文献   

6.
Heterocubane Cluster Compounds (NEt4){Y=M[(μ3‐S)Re(CO)3]33‐E)} (M = W or Mo, Y = O or S, E = S or Se): Structures, Spectroscopy, and Electrochemistry Thiometallates [MS4]2– (M = Mo, W) or [WOS3]2– react with Re(CO)5(O3SCF3) and Li2E (E = S or Se) to yield the following compounds which were structurally characterized: (NEt4){S=W[(μ3‐S)Re(CO)3]33‐S)}(NEt4) ( 1 ), (NEt4){O/S=W[(μ3‐S)Re(CO)3](μ3‐S)}(NEt4) ( 1 / 2 ), (mixed crystals), (NEt4){S=W[(μ3‐S)Re(CO)3]33‐Se)}(NEt4) ( 3 ) and (NEt4){S=Mo[(μ3‐S)Re(CO)3]33‐S)}(NEt4) ( 4 ). The heterocubane anions 1 – 4 contain electron‐rich centers such as rhenium(I) or sulfide whereas molybdenum(VI) or tungsten(VI) act as acceptor sites. Accordingly, the absorption spectra show long‐wavelength metal‐to‐ligand charge transfer transitions, and cyclic voltammetry reveals a quasi‐reversible reduction of the clusters. Although both six‐coordinate rhenium(I) and four‐coordinate metal(VI) centers are present in the clusters there is no evidence for significant metal‐to‐metal charge transfer interaction.  相似文献   

7.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXIV. Formation and Structure of [μ‐(1,2 : 2‐η‐tBu2P–P){Mo(CO)2cp′}2] [cp′Mo(CO)2]2 (cp′ = C5H4tBu) reacts with tBu2P–P=P(Me)tBu2 to yield the compound [μ‐(1,2 : 2‐η‐tBu2P–P){Mo(CO)2cp′}2], which crystallizes in the space group P212121 with a = 1202.42(7), b = 1552.48(8), and c = 1765.3(1) pm.  相似文献   

8.
Two new hybrid fluorides, {[(C2H4NH3)3NH]4+}2 · (H3O)+ · [Al7F30]9– ( I ) and {[(C2H4NH3)3NH]4+}2 · [Al7F29]8– · (H2O)2 ( II ), are synthesized by solvothermal method. The structure determinations are performed by single crystal technique. The symmetry of both crystals is triclinic, sp. gr. P 1, I : a = 9.1111(6) Å, b = 10.2652(8) Å, c = 11.3302(8) Å, α = 110.746(7)°, β = 102.02(1)°, γ = 103.035(4)°, V = 915.9(3) Å3, Z = 1, R = 0.0489, Rw = 0.0654 for 2659 reflections, II : a = 8.438(2) Å, b = 10.125(2) Å, c = 10.853(4) Å, α = 106.56(2)°, β = 96.48(4)°, γ = 94.02(2)°, V = 877.9(9) Å3, Z = 1, R = 0.0327, Rw = 0.0411 for 3185 reflections. In I , seven corner‐sharing AlF6 octahedra form a [Al7F30]9– anion with pseudo 3 symmetry; such units are found in the pyrochlore structure. The aluminum atoms lie at the corners of two tetrahedra, linked by a common vertex. In II , similar heptamers are linked in order to build infinite (Al7F29)n8– chains oriented along a axis. In both compounds, organic moieties are tetra protonated and establish a system of hydrogen bonds N–H…F with four Al7F309– heptamers in I and with three inorganic chains in II .  相似文献   

9.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (L = CO, PnBu3) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts with several phosphines (L) in refluxing toluene under substitution of one carbonyl ligand and yields the compounds [Ru2(CO)3L(μ‐H)(μ‐PtBu2)(μ‐dppm)] (L = PnBu3, 2 a ; L = PCy2H, 2 b ; L = dppm‐P, 2 c ; dppm = Ph2PCH2PPh2). The reactivity of 1 as well as the activated complexes 2 a – c towards phenylethyne was studied. Thus 1 , 2 a and 2 b , respectively, react with PhC≡CH in refluxing toluene with elimination of dihydrogen to the acetylide‐bridged complexes [Ru2(CO)4(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 3 ) and [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 4 a and 4 b ). The molecular structures of 3 and 4 a were determined by crystal structure analyses.  相似文献   

10.
Synthesis of Bridged Binuclear Titanocene Compounds – Crystal Structure of Cl2Ti[(C5H4)(C5H4)(Me)Si–Si(Me)(C5H4)(C5H4)]TiCl2 · PhMe Starting from Cp2(Me)Si–Si(Me)Cp2 1 the complexes X2Ti[(C5H4)(C5H4)(Me)Si–Si(Me)(C5H4)(C5H4)]TiX2 (X = Cl ( 2 a ); X = Me ( 3 )) were synthesized. The compounds were characterized by means of their 1H‐ and 13C‐n.m.r. and MS‐spectra. The crystal structure of 2 a · PhMe was determined.  相似文献   

11.
Synthesis, NMR Spectra and Structure of [(CH3)2Ga{μ‐P(H)Si(CH3)3}2Ga(CH3)2{μ‐P(Si(CH3)3)2}Ga(CH3)2] The title compound has been prepared in good yield by the reaction of [Me2GaOMe]3 (Me = CH3) with HP(SiMe3)2 in toluene (ratio 1 : 1,1) and purified by crystallization from pentane or toluene, respectively. This organogallium compound forms (Ga–P)3 ring skeletons with one Ga–P(SiMe3)2–Ga and two Ga–P(H)SiMe3–Ga bridges and crystallizes in the monoclinic space group C2/c. The known homologous Al‐compound is isotypic, both (MIII–P)3 heterocycles have twist‐conformations, the ligands of the monophosphane bridges have trans arrangements.  相似文献   

12.
Syntheses and Properties of Pentafluoroethylcopper(I) and ‐copper(III) Compounds: CuC2F5 · D, [Cu(C2F5)2], and (C2F5)2CuSC(S)N(C2H5)2 The reactions of Cd(C2F5)2 · D and Zn(C2F5)2 · D (D = 2 CH3CN, 2 DMF), respectively, with copper(I) halides in the presence of halides quantitatively yield the CuC2F5 compounds CuC2F5 · D and [Cu(C2F5)2]. The CuC2F5 complexes are identified by NMR spectroscopy, while [Cu(C2F5)2] is isolated as PNP salt (PNP = (C6H5)3PNP(C6H5)3+). Both compounds are excellent C2F5 group transfer reagents, even at low temperature. Oxidation of [Cu(C2F5)2] with [(C2H5)2NC(S)S]2 yields the crystalline Cu(III) compound (C2F5)2CuSC(S)N(C2H5)2 (monoclinic, C2/c).  相似文献   

13.
Synthesis and Molecular Structure of [Al(SiMe3)3(DBU)] (DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene) [Al(SiMe3)3(OEt2)] reacts with DBU (DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene) at 0 °C yielding [Al(SiMe3)3 · (DBU)] ( 1 ). 1 was characterised spectroscopically (1H, 13C, 29Si, 27Al NMR, IR, MS) and by X-ray structure determination [monoclinic, C2/c, a = 33.053(2), b = 9.307(1), c = 20.810(1) Å, β = 124.07(2)°, V = 5302.4(5) Å3, Z = 8, 218(2) K]. 1 does not react with [Cp2ZrCl2] even in boiling toluene.  相似文献   

14.
Syntheses and Crystal Structures of (η6‐Diarene)TiII‐bis(tetrachloroaluminate) Complexes, Diarene = Biphenyl or 3,5,3′,5′‐Tetramethyl‐biphenyl Syntheses of (η6‐diarene)TiII(AlCl4)2 complexes were performed by the Fischer‐Hafner method. The diarenes employed were biphenyl and 3,5,3′,5′‐tetramethyl‐biphenyl. In each of the resulting complexes, (η6‐C12H10)TiII(AlCl4)2 ( 1 ) and (η6‐C16H18)TiII(AlCl4)2 ( 2 ), only one C6‐ring of a diarene is coordinatively active. 1 : Space group Pbca, Z = 8, lattice constants at 20 °C: a = 16.864(3), b = 13.931(3), c = 18.807(3) Å; R1 = 0.048. 2 : Space group P21/n, Z = 4, lattice constants at 20 °C: a = 9.775(1), b = 13.720(1), c = 20.214(1) Å; β = 95.50(1)°; R1 = 0.050.  相似文献   

15.
Synthesis and Structure of two Mixed Substituted Dialanes Al2X2{Si(SiMe3)3}2 · 2 THF (X = Cl, Br) The syntheses of tris(trimethylsilyl)silyl (hypersilyl) and halide substituted dialanes Al2X2{Si(SiMe3)3}2 · 2 THF (X = Cl, Br) are presented. The results of the X‐ray diffraction experiments are presented and discussed in comparison to the AlIII compounds AlBr2Si(SiMe3)3 · THF and AlBr3 · OPh2.  相似文献   

16.
Synthesis and Insertion Reactions of Cp2′HfCl{As(SiMe3)2} (Cp′ = C5H4Me) The reaction of Cp2′HfCl2 (Cp′ = C5H4Me) with Li(THF)2,5As(SiMe3)2 (1 : 1) at room temperature gives the terminal hafnocene arsenido complex Cp2′HfCl{As(SiMe3)2} ( 1 ) in high yield. 1 inserts CS2 and PhNC into the Hf? As bond yielding Cp2′HfCl{η2-S2CAs(SiMe3)2} ( 2 ) and Cp2′HfCl{η2-N(Ph)CAs(SiMe3)2} ( 3 ). The thermally sensitive complexes 1–3 were characterised spectroscopically and crystal structure determinations were carried out on 1 and 3 which shows the η2 bonding mode of the N(Ph)CAs(SiMe3)2 ligand in the latter.  相似文献   

17.
[Ga6R8]2– (R = SiPh2Me): A Metalloid Cluster Compound with an Unexpected Ga6‐Frame The reaction of a metastable solution of GaBr with a solution of LiSiPh2Me in a toluene/THF mixture results in orange coloured crystals of [Ga6(SiPh2Me)8]2– · 2 [Li(THF)4]+ ( 1 ). The unexpected structure of the planar Ga6 frame (C2h) could also be realized with the help of DFT calculation. DFT calculations furthermore show that 1 is energetically favoured against an octahedral Ga6R62– species and R2. In contrast calculations for the similar Al and B species show that in these cases the octahedral entities are favoured. These results demonstrate that even for similar compounds of B, Al, and Ga Wade rules are too general and that they cannot predict the correct structure. Moreover the atomic arrangement within 1 shows that a structure is preferred which is also present in allotropic β‐Ga and that therefore clusters of this type should be called metalloid or more general elementoid.  相似文献   

18.
Syntheses and characteristics of the heterobimetalorganics of the silicon with the 2‐(dimethylaminomethyl)ferrocenyl ligand FcN (η5‐C5H5)Fe[η5‐C5H3(CH2NMe2)] The heterobimetallic lithiumorganyl [2‐(dimethylaminomethyl)ferrocenyl] lithium, LiFcN, reacts with silicon(IV)‐chlorid, SiCl4, under the formation of heterobimetallic silicon(IV) organyl [(FcN)3SiCl] ( 1 ). The heterobimetallic organosilanol [(FcN)3SiOH] ( 2 ) is formed at hydrolysis of 1 . A detailed characterization of the defined compounds 1 and 2 was carried out by NMR‐ rsp. mass‐spectrometry and by crystal X‐ray analysis of 2 .  相似文献   

19.
Tetranuclear Cluster Complexes of the Type [MM′(AuR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (M,M′ = Mn, Re; R = Ph, Cy, Et): Synthesis, Structure, and Topomerisation The dirhenium complex [Re2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 1 ) reacts at room temperature in thf solution with each two equivalents of the base DBU and of ClAuPR3 (R = Ph, Cy, Et) in a photochemical reaction process to afford the tetranuclear clusters [Re2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 2 ), Cy ( 3 ), Et ( 4 )) in yields of 35–48%. The homologue [Mn2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 5 ) leads under the same reaction conditions to the corresponding products [Mn2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 6 ), Et ( 8 )). Also [MnRe(μ‐H)(μ‐PCy2)(CO)7(ax/eq‐H2PCy)] ( 9 ) reacts under formation of [MnRe(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 10 ), Et ( 11 )). All new cluster complexes were identified by means of 1H‐NMR, 31P‐NMR and ν(CO)‐IR spectroscopic measurements. 2 , 4 and 10 have also been characterized by single crystal X‐ray structure analyses with crystal parameters: 2 triclinic, space group P 1, a = 12.256(4) Å, b = 12.326(4) Å, c = 24.200(6) Å, α = 83.77(2)°, β = 78.43(2)°, γ = 68.76(2)°, Z = 2; 4 monoclinic, space group C2/c, a = 12.851(3) Å, b = 18.369(3) Å, c = 40.966(8) Å, β = 94.22(1)°, Z = 8; 10 triclinic, space group P 1, a = 12.083(1) Å, b = 12.185(2) Å, c = 24.017(6) Å, α = 83.49(29)°, β = 78.54(2)°, γ = 69.15(2)°, Z = 2. The trapezoid arrangement of the metal atoms in 2 and 4 show in the solid structure trans‐positioned an open and a closed Re…Au edge. In solution these edges are equivalent and, on the 31P NMR time scale, represent two fluxional Re–Au bonds in the course of a topomerization process. Corresponding dynamic properties were observed for the dimanganese compounds 6 and 8 but not for the related MnRe clusters 10 and 11 . 2 and 4 are the first examples of cluster compounds with a permanent Re–Au bond valence isomerization.  相似文献   

20.
Syntheses of Oxovanadium(V) Halide Complexes Stabilized with Tripodal Oxygen Ligands LR = [η5‐(C5H5)Co{PR2(O)}3], R = OMe, OEt The sodium salts of the tripodal oxygen ligands LR = [η5‐(C5H5)Co{PR2(O)}3] (R = OMe, OEt) react with the oxovanadium halides V(O)F3 and V(O)Cl3 to yield deep red compounds of the type [V(O)X2LR]. Halide exchange reactions with [V(O)Cl2LOMe] und [V(O)F2LOMe] aiming at the preparation of the analogous bromide complex [V(O)Br2LOMe] led to the isomer [VO(LOMe)2][V(O)Br4]. The crystal structure of [V(O)Cl2LOMe] has been determined by single crystal x‐ray diffraction. The compound crystallizes in the monoclinic space group P21/n with a = 9.6332(8), b = 15.0312(11) and c = 15.3742(12)Å, β = 100.181(8)°. The coordination around vanadium is distorted octahedral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号