首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work is directed to the stereospecific living radical polymerization of acrylamides such as N,N‐dimethylacrylamide and N‐isopropylacrylamide with an iron complex and a Lewis acid. DMAM was polymerized with [FeCp(CO)2]2 in conjunction with an alkyl iodide [(CH3)2C(CO2Et)I] as an initiator in the presence of Y(OTf)3 in toluene/methanol (1/1) at 60 °C to be converted almost quantitatively to the polymers with controlled molecular weights and high isotacticity (m > 80%), wherein the Fe‐complex generates radical species from a covalent C? I bond of the dormant species and the Lewis acid controls the stereochemistry of the polymerization via coordination with the amide groups of the polymer terminal and the monomer. A series of Lewis acids were also used for the iron(I)‐catalyzed DMAM polymerization, and Yb(OTf)3 and Yb(NTf2)3 proved effective in giving isotactic polymers without deteriorating the molecular weight control similar to Y(OTf)3. Furthermore, a slight enhancement of isospecificity was observed for the iron‐catalyzed system in comparison with the α,α‐Azobisisobutyronitrile‐initiated, when coupled with Y(OTf)3. Stereoblock polymerization of DMAM via a one‐pot reaction was also achieved by just adding the Y(OTf)3 methanol solution in the course of the polymerization to give atactic‐b‐isotactic poly(DMAM). A similar but slightly lower control in the molecular weight and tacticity was achieved in the polymerization of NIPAM with [FeCp(CO)2]2/Y(OTf)3. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2086–2098, 2006  相似文献   

2.
The radical polymerization of an optically active methacrylamide, N‐[(R)‐α‐methoxycarbonylbenzyl]methacrylamide, was carried out in the absence and presence of Lewis acids such as yittribium trifluoromethanesulfonate [Yb(OTf)3] and scandium trifluoromethanesulfonate [Sc(OTf)3]. Catalytic amounts of the Lewis acids significantly affected the stereoregularity of the obtained polymers. The polymerization with Yb(OTf)3 in tetrahydrofuran afforded isotactic polymers (up to mm = 87%), whereas the conventional radical method without the Lewis acid produced polymers rich in syndiotacticity (up to rr = 88%). The radical polymerization in the presence of MgBr2 proceeded in a heterotactic‐selective manner (mr = 63%). Thus, the isotactic, syndiotactic, and heterotactic poly(methacrylamide)s were synthesized by the radical processes. The chiral recognition abilities of the obtained optically active poly(methacrylamide)s were affected by the stereoregularity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3354–3360, 2003  相似文献   

3.
The radical polymerization of various (meth)acrylamides in the presence of Lewis acids such as Yb(OTf)3 and Y(OTf)3 was carried out. The polymerization with Lewis acids led to highly isotactic polymers, while the polymers synthesized without Lewis acids were atactic or syndiotactic. The dependence of the polymer properties on the tacticity was also demonstrated.  相似文献   

4.
The free‐radical polymerizations of methyl methacrylate (MMA), ethyl methacrylate, isopropyl methacrylate, and 2‐methoxyethyl methacrylate were carried out in the presence of various Lewis acids. The MMA polymerization in the presence of scandium trifluoromethanesulfonate [Sc(OTf)3] in toluene or CHCl3 produced a polymer with a higher isotacticity and heterotacticity than that produced in the absence of Sc(OTf)3. Similar effects were observed during the polymerization of the other monomers. ScCl3, Yb(OTf)3, Er(OTf)3, HfCl4, HfBr4, and In(OTf)3 also increased the isotacticity and heterotacticity of the polymers. The effects of the Lewis acids were greater in a solvent with a lower polarity and were negligible in tetrahydrofuran and N,N‐dimethylformamide. Sc(OTf)3 was also found to accelerate the polymerization of MMA. On the basis of an NMR analysis of a mixture of Sc(OTf)3, MMA, and poly(methyl methacrylate), the monomer–Sc(OTf)3 interaction seems to be involved in the stereochemical mechanism of the polymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1463–1471, 2001  相似文献   

5.
The effects of Lewis acids, that is, rare earth metal trifluoromethanesulfonates, on the free‐radical polymerization of N‐methylmethacrylamide (MMAM), N‐isopropylmethacrylamide (IPMAM), Ntert‐butylmethacrylamide (tBMAM), N‐phenylmethacrylamide (PMAM), and methacrylamide were examined under various conditions. A catalytic amount of Yb(OSO2CF3)3 significantly affected the stereochemistry during the radical polymerization. Polymerization solvents strongly influenced the effect of the Lewis acids. Methanol was the best solvent for increasing the isotactic specificity during the polymerization of MMAM and IPMAM, whereas tetrahydrofuran was more effective for the tBMAM and PMAM polymerizations. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1027–1033, 2003  相似文献   

6.
Enantiopure acrylamide derivatives, N‐[o‐(4‐methyl‐4,5‐dihydro‐1,3‐oxazol‐2‐yl) phenyl]acrylamide (MeOPAM), N‐[o‐(4‐isopropyl‐4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenyl]acrylamide (PriOPAM), and N‐[o‐(4‐phenyl‐4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenyl]acrylamide (PhOPAM), were synthesized and radically polymerized in the presence of rare earth metal trifluoromethanesulfonates (Ln(OTf)3, Ln = La, Nd, Sm, and Y) to yield corresponding optically active polymers. Among these Lewis acids, Y(OTf)3 was found to be most effective for increasing the isotactic specificity during the radical polymerizations when using n‐butanol as solvent. Also, the effect of the Lewis acids was significantly influenced by the ratio of Ln(OTf)3 to monomer. The relationship of both chiroptical property and the chiral recognition with the stereoregularity was then examined for the resulting polymers having various tacticity by spectroscopic techniques such as NMR, fluorescence, and circular dichroism. The results indicated that the polymers rich in isotacticity exhibited a favorable enantioselective discrimination ability toward 1,1′‐bi‐2‐naphthol as evidenced by 1H NMR study, where the characteristic hydroxyl proton signal was split into two peaks that ascribed respectively to the levo‐ and dextro‐isomer; furthermore, the splitting magnitude was linearly correlated with the diad isotacticity of the polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
Poly(acrylamide) (PAM) with controlled molecular weight and tacticity was prepared by UV-irradiation-initiated controlled/living radical polymerization in the presence of dibenzyl trithiocarbonate (DBTTC) and Y(OTf)3. The rapid and facile photo-initiated controlled/living polymerization at ambient temperature led to controlled molecular weight and narrow polydispersity (Mw/Mn = 1.12-1.24) of PAM. The coordination of Y(OTf)3 with the last two amide groups in the growing chain radical effectively enhanced isotacticity of PAM. The isotactic sequence of dyads (m), triads (mm) and pentads (mmmm) in PAM were 70.32%, 50.95%, and 29.97%, respectively, which were determined by the resonance of methine (CH) groups in PAM under 13C NMR experiment. Factors affecting stereocontrol during the polymerization were studied, including the type of Lewis acids, concentration of Y(OTf)3, and monomer conversion. It is intriguing that the meso tacticity increased gradually with chain propagation and quite higher isotacticity (m = 93.01%, mm = 86.57%) was obtained in the later polymerization stage (conversion 65-85%).  相似文献   

8.
We report syntheses of isotactic polyacrylate and polyacrylamide via a stereospecific radical polymerization of a pendant-transformable monomer, acrylamide carrying isopropyl-substituted ureidosulfonamide ( 1 ), followed by post-polymerization modification (PPM). The study in the alcoholysis and aminolysis reactions of the model compound ( 2 ) for evaluation of the transformation ability of the electron-withdrawing pendant group on the repeating unit 1 revealed the following points: the pendant of the polymer became more reactive than that of monomer; the pendant was active enough for aminolysis reaction affording the amide compound quantitatively without additive/catalyst; the addition of a lithium triflate [Li(OTf)] and triethylamine (Et3N) was effective as for promotion of the alcoholysis reaction. Poly(methyl acrylate) (PMA) was quantitatively obtained via the radical polymerization of 1 in the presence of Li(OTf) at 60 °C and the subsequent addition of methanol along with Et3N. Thus-obtained PMA showed higher isotacticity [m=74 %] than that directly obtained via radical polymerization of methyl acrylate (MA) (m=51 %). The isotacticity was further increased as the temperature and monomer concentration were lower, and eventually m was increased up to 93 %. The aminolysis PPM after the iso-specific radical polymerization of 1 gave various isotactic polyacrylamides carrying different alkyl pendant groups, including poly(N-isopropylacrylamide) (PNIPAM).  相似文献   

9.
Radical polymerization of Nn‐propyl‐α‐fluoroacrylamide (NNPFAAm) was investigated in several solvents at low temperatures in the presence or absence of Lewis bases, Lewis acids, alkyl alcohols, silyl alcohols, or fluorinated alcohols. Different effects of solvents and additives on stereospecificity were observed in the radical polymerizations of NNPFAAm and its hydrocarbon analogs such as N‐isopropylacrylamide (NIPAAm) and Nn‐propylacrylamide (NNPAAm); for instance, syndiotactic (and heterotactic) specificities were induced in radical polymerization of NNPFAAm in polar solvents (and in toluene in the presence of alkyl and silyl alcohols), whereas isotactic (and syndiotactic) specificities were induced in radical polymerizations of the hydrocarbon analogs under the corresponding conditions. In contrast, heterotactic specificity induced by fluorinated alcohols was further enhanced in radical polymerization of NNPFAAm. The effects of stereoregularity on the phase‐transition behaviors of aqueous solutions of poly(NNPFAAm) were also investigated. Different tendencies in stereoregularity were observed in aqueous solutions of poly(NNPFAAm)s from those in solutions of the hydrocarbon analogs such as poly(NIPAAm) and poly (NNPAAm). The polymerization behavior of NNPFAAm and the phase‐transition behavior of aqueous poly(NNPFAAm) are discussed based on possible fluorine–fluorine repulsion between the monomer and propagating chain‐end, and neighboring monomeric units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Anionic polymerization of N‐methoxymethyl‐N‐isopropylacrylamide ( 1 ) was carried out with 1,1‐diphenyl‐3‐methylpentyllithium and diphenylmethyllithium, ‐potassium, and ‐cesium in THF at ?78 °C for 2 h in the presence of Et2Zn. The poly( 1 )s were quantitatively obtained and possessed the predicted molecular weights based on the feed molar ratios between monomer to initiators and narrow molecular weight distributions (Mw/Mn = 1.1). The living character of propagating carbanion of poly( 1 ) either at 0 or ?78 °C was confirmed by the quantitative efficiency of the sequential block copolymerization using N,N‐diethylacrylamide as a second monomer. The methoxymethyl group of the resulting poly( 1 ) was completely removed to give a well‐defined poly(N‐isopropylacrylamide), poly(NIPAM), via the acidic hydrolysis. The racemo diad contents in the poly(NIPAM)s could be widely changed from 15 to 83% by choosing the initiator systems for 1 . The poly(NIPAM)s obtained with Li+/Et2Zn initiator system possessed syndiotactic‐rich configurations (r = 75–83%), while either atactic (r = 50%) or isotactic poly(NIPAM) (r = 15–22%) was generated with K+/Et2Zn or Li+/LiCl initiator system, respectively. Atactic and syndiotactic poly(NIPAM)s (42 < r < 83%) were water‐soluble, whereas isotactic‐rich one (r < 31%) was insoluble in water. The cloud points of the aqueous solution of poly(NIPAM)s increased from 32 to 37 °C with the r‐contents. These indicated the significant effect of stereoregularity of the poly(NIPAM) on the water‐solubility and the cloud point in water © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4832–4845, 2006  相似文献   

11.
Aqueous sulfonic acids (HOSO2R; R = CH3, Ph‐p‐CH3, and Ph‐p‐NO2), coupled with a water‐tolerant Lewis acid, ytterbium triflate [Yb(OTf)3; OTf =  OSO2CF3], initiate the cationic suspension polymerization of p‐methoxystyrene (pMOS) in heterogeneous aqueous media. They induce controlled polymerization of pMOS at 30 °C, and the molecular weights of the polymers (weight‐average molecular weight/number‐average molecular weight ∼ 1.7) increase with conversion. These suspension polymerizations are initiated by the entry of sulfonic acid from the aqueous phase into the organic phase and proceed via reversible activation of the sulfonyl terminus by the Lewis acid. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2728–2733, 2000  相似文献   

12.
《Tetrahedron: Asymmetry》2003,14(19):2927-2937
A new Lewis acid-catalyzed atom transfer radical cyclization reaction of unsaturated α-bromo oxazolidinone imides is reported. In the presence of Lewis acids such as Mg(ClO4)2 and Yb(OTf)3, a series of trans cyclic products was obtained in high yield (up to 87%) between 0°C and room temperature. The loading of strong Lewis acids, such as Yb(OTf)3, can be reduced to 0.1 equiv. without significantly compromising the yield. Excellent diastereoselectivity could be achieved by using 1,2-stereocontrol or a chiral oxazolidinone auxiliary. For substrates 1e and 1f bearing a β-methyl substituent and the chiral auxiliary, (S)-(−)-4-benzyl-5,5-dimethyl-2-oxazolidinone, respectively, the diastereomeric ratio of the products was greater than 50:1.  相似文献   

13.
Chain transfer to solvent has been investigated in the conventional radical polymerization and nitroxide‐mediated radical polymerization (NMP) of N‐isopropylacrylamide (NIPAM) in N,N‐dimethylformamide (DMF) at 120 °C. The extent of chain transfer to DMF can significantly impact the maximum attainable molecular weight in both systems. Based on a theoretical treatment, it has been shown that the same value of chain transfer to solvent constant, Ctr,S, in DMF at 120 °C (within experimental error) can account for experimental molecular weight data for both conventional radical polymerization and NMP under conditions where chain transfer to solvent is a significant end‐forming event. In NMP (and other controlled/living radical polymerization systems), chain transfer to solvent is manifested as the number‐average molecular weight (Mn) going through a maximum value with increasing monomer conversion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
1,3-Dipolar cycloaddition reaction of diazo esters to electron-deficient dipolarophiles to yield the corresponding 1- or 2-pyrazolines was found to be significantly accelerated with Lewis acids (Yb(OTf)3, Sc(OTf)3, GaCl3, EtAlCl2). The use of GaCl3 as the catalyst leads to the acceleration not only of the 1,3-dipolar cycloaddition reaction, but also subsequent insertion of the CHCO2Me electrophilic fragment of methyl diazoacetate into the N-H bond of 2-pyrazolines formed. Such Lewis acids as SnCl4, BF3, TiCl4, and In(OTf)3 are not efficient in the described processes, since they rapidly decompose starting diazo compounds.  相似文献   

15.
The radical polymerization of methyl methacrylate (MMA) was carried out in the presence of combined Lewis acids of the AlCl3-FeCl2 system. Compared with the polymerization produced in the presence of single Lewis acids, AlCl3 or FeCl2, the MMA polymerization in the presence of AlCl3-FeCl2 composite in CHCl3 or 1-butanol produced a polymer with a higher isotacticity and in toluene produced a polymer with a much higher isotacticity (mm = 50%). The molecular weight and polydispersity of PMMA in the presence of Lewis acids were similar with those in the absence of Lewis acids, although Lewis acids decelerate the polymerization of MMA. The effects of the Lewis acids were greater in a solvent with a lower polarity. A possible stereocontrol mechanism of the polymerization was proposed. The Lewis acid composite of AlCl3-FeCl2 readily formed a complex with growing species. These complexes possessed apparent bulkiness that changes the direction of monomer addition to the growing radical center.  相似文献   

16.
在三氟甲磺酸稀土盐(Ln(OTf)3,Ln=La,Nd,Sm,Y)的存在下,光学纯N-邻唑啉苯基甲基丙烯酰胺((S)-MeOPMAM)经自由基聚合反应得到相应的光学活性聚合物.考察了稀土盐种类、用量及溶剂性质等因素对聚合反应立体化学的影响.研究发现,以Y(OTf)3为调节剂、正丁醇为溶剂的体系能在一定程度上提高聚合反应的全同立体定向性.聚合物的手性光学性质明显依赖于立构规整度,随全同含量增大,聚合物的比旋光度和π-π*电子跃迁区域的Cotton效应强度呈下降趋势.利用1H-NMR技术研究了上述聚合物与1,1′-联-2-萘酚(BINOL)的对映选择性相互作用,结果表明,全同三元组含量较高的聚合物不仅使酚羟基质子峰向低场位移,而且导致信号分裂.  相似文献   

17.
Three controlled/living radical polymerization processes, atom transfer radical polymerization (ATRP), reversible addition-fragmentation transfer (RAFT) polymerization, and nitroxide-mediated polymerization (NMP), were investigated for the polymerization of N,N-dimethylacrylamide in the presence of Lewis acids known to enhance isotacticity, such as yttrium trifluoromethanesulfonate (Y(OTf)(3)) and ytterbium trifluoromethanesulfonate (Yb(OTf)(3)). Poly(N,N-dimethylacrylamide) with controlled molecular weight, low polydispersity (M(w)/M(n) < 1.2), and a high proportion of meso dyads ( approximately 85%) was prepared by ATRP (with initiating system methyl 2-chloropropionate/CuCl/Me(6)TREN) and RAFT (with cumyl dithiobenzoate transfer agent) in the presence of Y(OTf)(3). The combination of NMP (using N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide, SG1) and a Lewis acid complexation technique led to less precise control over chain architecture and microstructure ( approximately 65% meso dyads), as compared to RAFT/Y(OTf)(3) or ATRP/Y(OTf)(3). The latter two systems were used for the first one-pot synthesis of stereoblock copolymers by radical polymerization. Well-defined stereoblock copolymers, atactic-b-isotactic poly(N,N-dimethylacrylamides), were obtained by adding Y(OTf)(3) at a given time to either RAFT or ATRP polymerizations, initially started without the presence of the Lewis acid.  相似文献   

18.
Thermoresponsive colloidal particles were prepared by seeded precipitation polymerization of N-isopropylacrylamide (NIPAM) in the presence of a crosslinking monomer, N,N-methylenebisacrylamide (MBA), using polystyrene latex particles (ca. 50 nm in diameter) as seeds in aqueous dispersion. Phase transitions of the prepared poly(N-isopropylacrylamide), PNIPAM, shells on polystyrene cores were studied in comparison to colloidal PNIPAM microgel particles, in H2O and/or in D2O by dynamic light scattering, microcalorimetry and by 1H NMR spectroscopy including the measurements of spin–lattice (T1) and spin–spin (T2) relaxation times for the protons of PNIPAM. As expected, the seed particles grew in hydrodynamic size during the crosslinking polymerization of NIPAM, and a larger NIPAM to seed mass ratio in the polymerization batch led to a larger increase of particle size indicating a product coated with a thicker PNIPAM shell. Broader microcalorimetric endotherms of dehydration were observed for crosslinked PNIPAM on the solid cores compared to the PNIPAM microgels and also an increase of the transition temperature was observed. The calorimetric results were complemented by the NMR spectroscopy data of the 1H-signal intensities upon heating in D2O, showing that the phase transition of crosslinked PNIPAM on polystyrene core shifts towards higher temperatures when compared to the microgels, and also that the temperature range of the transition is broader.  相似文献   

19.
A quite small dose of a poisonous species was found to induce living cationic polymerization of isobutyl vinyl ether (IBVE) in toluene at 0 °C. In the presence of a small amount of N,N‐dimethylacetamide, living cationic polymerization of IBVE was achieved using SnCl4, producing a low polydispersity polymer (weight–average molecular weight/number–average molecular weight (Mw/Mn) ≤ 1.1), whereas the polymerization was terminated at its higher concentration. In addition, amine derivatives (common terminators) as stronger bases allow living polymerization when a catalytic quantity was used. On the other hand, EtAlCl2 produced polymers with comparatively broad MWDs (Mw/Mn ~ 2), although the polymerization was slightly retarded. The systems with a strong base required much less quantity of bases than weak base systems such as ethers or esters for living polymerization. The strong base system exhibited Lewis acid preference: living polymerization proceeded only with SnCl4, TiCl4, or ZnCl2, whereas a range of Lewis acids are effective for achieving living polymerization in the conventional weak base system such as an ester and an ether. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6746–6753, 2008  相似文献   

20.
The effects of Lewis acids, namely, rare earth metal trifluoromethanesulfonates, on the radical polymerization of (S)-N-(2-hydroxy-1-phenylethyl) methacrylamide were examined under various conditions. In the absence of Lewis acids, syndiotactic-rich polymers (r = 84%) were obtained, whereas in the presence of a catalytic amount of Lewis acids, the polymerization proceeded in an isotactic-specific manner (m up to 64%). Polymerization solvents strongly influenced the effect of the Lewis acids. The polymerization in n-butyl alcohol showed the highest isotactic selectivity, whereas the polymerization in DMSO showed no isotacticity-enhancing effect. Further increases in the Lewis acid concentration and the polymerization temperature did not produce clear effects on the tacticity of the polymers. The interaction between the monomer and Lewis acids was investigated, and the plausible mechanism of stereocontrol in the radical polymerization of (S)-HPEMA was analyzed based on the Lewis acid-monomer interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号