首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The physical vacuum state and general expression for the Hamiltonian ofd+1 dimensional lattice gauge theory are given by incorporating the exact ground state of pure gauge theory and the variational fermion vacuum state. The applications toSU(2) andSU(3) gauge theories in 2+1 and 3+1 dimensions are demonstrated and the fermion condensates \(\left\langle {\bar \psi \psi } \right\rangle \) as functions of 1/g 2 are calculated.  相似文献   

2.
We propose a general formulation of simplicial lattice gauge theory inspired by the finite element method. Numerical tests of convergence towards continuum results are performed for several SU(2) gauge fields. Additionally, we perform simplicial Monte Carlo quantum gauge field simulations involving measurements of the action as well as differently sized Wilson loops as functions of β.  相似文献   

3.
A general formula for the discrete states (NeveuSchwarz sector) in N = 1 2D super-Liouville theory is written down in the world-sheet supersymmetric form. We then derive a set of gauge states at the discrete momenta. These discrete gauge states are shown to carry the ω charges and serve as the symmetry parameters in the old covariant quantization of the theory.  相似文献   

4.
5.
We prove that in a general massless N = I SYM theory off-shell Green functions exist such that Green functions of gauge invariant operators are supersymmetrically covariant. The off-shell infrared problem present in the superfield treatment of these theories is thus shown to remain a gauge artefact. The N = 2, 4 pure SYM theories are covered by this result and thus exist as N = 1 SYM theories.  相似文献   

6.
We extend the SU(2) lattice gauge theory of Kogut and Susskind to a general non-Abelian gauge group. At the Lagrangian level, we find the theory to be related to the motion of a point in group space. We then quantise such a system using the natural geometric structure of group parameter space, and we apply our results to find the Hamiltonian for the general lattice gauge theory. We also discuss the large N behaviour of the theory.  相似文献   

7.
The paper examines the emergence of gauge fields during the evolution of a particle with a spin that is described by a matrix Hamiltonian with n different eigenvalues. It is shown that by introducing a spin gauge field a particle with a spin can be described as a spin multiplet of scalar particles situated in a non-Abelian pure gauge (forceless) field U (n). As the result, one can create a theory of particle evolution that is gauge-invariant with regards to the group Un (1). Due to this, in the adiabatic (Abelian) approximation the spin gauge field is an analogue of n electromagnetic fields U (1) on the extended phase space of the particle. These fields are force ones, and the forces of their action enter the particle motion equations that are derived in the paper in the general form. The motion equations describe the topological spin transport, pumping, and splitting. The Berry phase is represented in this theory analogously to the Dirac phase of a particle in an electromagnetic field. Due to the analogy with the electromagnetic field, the theory becomes natural in the four-dimensional form. Besides the general theory, the article considers a number of important particular examples, both known and new.  相似文献   

8.
Peter Woit 《Nuclear Physics B》1985,262(2):284-298
A general discussion of the topology of continuum gauge fields and the problems involved in defining and computing the topology of a lattice gauge field configuration is given. Two definitions of the topological charge for 4-dimensional SU(n) lattice gauge theory are presented. The first of these is geometrically the most straightforward, the second the most useful for efficient numerical calculations.  相似文献   

9.
The duality properties of simple Z(N) gauge theories are discussed. For N ? 4 we find self duality in four dimensions and we give the transition points. For N > 4 these systems are not self dual. Also, the order parameter is discussed. The general Z(N) gauge theory is found to be self dual for all N.  相似文献   

10.
P. Suranyi 《Nuclear Physics B》1982,210(4):519-528
A general expression for the expectation value of the hamiltonian of a d + 1 dimensional lattice gauge theory as a function of the norm of the variational state (that itself has the form of a partition function of a d-dimensional lattice gauge theory) is given. Applications include U(1), SU(2), U(2) and U(N) gauge theories for large N in d = 2 + 1 dimensions. It is also demonstrated that the deconfining phase transition is of first order in every dimension above the critical one, provided it is of first or second order at the critical dimension.  相似文献   

11.
Necessary group theoretic conditions for all elementary gauge bosons and fermions of an arbitrary renormalizable gauge theory to lie on Regge trajectories are reviewed. It is then argued that in properly unified gauge theories all particles of a given spin lie on Regge trajectories. This then implied that a properly unified gauge theory has no local U(1) factor groups, and no massive fermion singlets. A consideration of the general pattern of Regge and radial recurrences to be expected in quantum field theories suggests that the presence or absence of spin 32 quarks and/or leptons in the TeV region will provide crucial clues to enable one to distinguish between various classes of unified, grand unified, and subconstituent models. The correct interpretation of such excited fermions will require correlation with the Higgs boson mass and possible radial and Regge excitations of the weak vector bosons.  相似文献   

12.
We derive the general formula for the supertrace of the quartic mass matrix in a general supersymmetric gauge theory, with arbitrary representations for the chiral multiplets. This formula clarifies the non-renormalization theorems in presence of gauge interactions and gives “extended renormalization theorems” for N = 2 and N = 4 supersymmetric Yang-Mills theories. In particular we find the known result that gren = gbare for the N = 4 theory and the new result mren = mbare for the N = 2 gauge interactions of massive hypermultiplets. We give arguments to the extent that the latter non-renormalization theorem persists to all orders in perturbation theory.  相似文献   

13.
The theory of general relativity is presented in the form of a gauge field theory by use of the group SL(2,C). The following topics are discussed: (1)Spinor representation of the group SL(2,C); (2)Connection between spinors and tensors; (3)Maxwell, Weyl and Riemann Spinors; (4)Classification of Maxwell spinor; (5)Classification of Weyl spinor; (6)Isotopic spin and gauge fields; (7)Lorentz invariance and the gravitational field; (8)SL(2,C) invariance and the gravitational field; (9)Gravitational field equations.  相似文献   

14.
It is shown in the context of a pure Yang-Mills theory that the solution of the Slavnov-Taylor identities in a general axial gauge admits counter-terms which may or may not be Lorentz invariant. It follows from the background field method that these counter-terms must be gauge invariant. The Lorentz-non-invariant counter-terms appear already at the one-loop level and depend both on the gauge parameter α and the non-covariant vector nω.  相似文献   

15.
We propose a systematic procedure for extracting gauge invariant and gauge fixed actions for various higher-spin gauge field theories from covariant bosonic open string field theory. By identifying minimal gauge invariant part for the original free string field theory action, we explicitly construct a class of covariantly gauge fixed actions with BRST and anti-BRST invariance. By expanding the actions with respect to the level N   of string states, the actions for various massive fields including higher-spin fields are systematically obtained. As illustrating examples, we explicitly investigate the level N?3N?3 part and obtain the consistent actions for massive graviton field, massive 3rd rank symmetric tensor field, or anti-symmetric field. We also investigate the tensionless limit of the actions and explicitly derive the gauge invariant and gauge fixed actions for general rank n symmetric and anti-symmetric tensor fields.  相似文献   

16.
The energy-momentum tensor in spontaneously broken non-Abelian gauge field theories is studied. The motivation is to show that recent results on the finiteness and gauge independence of S-matrix elements in gauge theories extends to observable amplitudes for transitions in a gravitational field. Path integral methods and dimensional regularization are used throughout. Green's functions Γμν(j)(q; p1,…,pj) involving the energy-momentum tensor and j particle fields are proved finite to all orders in perturbation theory to zero and first order in q, and finite to one loop order for general q. Amputated Green's functions of the energy momentum tensor are proved to be gauge independent on mass shell.  相似文献   

17.
Yang-Mills' field is generalized to possess a nontrivial scalar part. The most general transformations for such a field under the 3-parameter isotopic gauge transformation is obtained. Using this generalized gauge field, a gauge invariant Lagrangian is constructed within the framework of the quark model. Interactions for spin-1 as well as for spin-0 are generated. As a further application a weak interaction theory mediated by the generalized gauge (boson) field is formulated. The entire weak interactions are generated in two halfs; the hadron-boson interaction is generated according to Yang-Mills' trick using the generalized gauge field and the other half (boson-lepton, etc.) is then generated by making use of the scalar part of the gauge fields according to the conventional pion gauge principle. The effective Lagrangian is then found to be mediated by the effective propagators which fall off as p−2 at high momenta; the unitarity of the theory can thereby be insured. Universality in weaker sense than the usual one is applied to the intermediate bosons; our theory for β-decay then reduces to Cabibbo's at low energy.  相似文献   

18.
M Carmeli  S Malin 《Annals of Physics》1977,103(1):208-232
The starting point is a spinor affine space-time. At each point, two-component spinors and a basis in spinor space, called “spin frame,” are introduced. Spinor affine connections are assumed to exist, but their values need not be known. A metric tensor is not introduced. Global and local gauge transformations of spin frames are defined with GL(2) as the gauge group. Gauge potentials Bμ are introduced and corresponding fields Fμν are defined in analogy with the Yang-Mills case. Gravitational field equations are derived from an action principle. Incases of physical interest SL(2, C) is taken as the gauge group, instead of GL(2). In the special case of metric space-times the theory is identical with general relativity in the Newman-Penrose formalism. Linear combinations of Bμ are generalized spin coefficients, and linear combinations of Fμν are generalized Weyl and Ricci tensors and Ricci scalar. The present approach is compared with other formulations of gravitation as a gauge field.  相似文献   

19.
20.
Confinement in a pure gauge theory at non-zero temperature may be discussed in terms of an order parameter which transforms under a global symmetry group, the center of the gauge group. Integrating out all degrees of freedom except this order parameter generates an effective scalar field theory for the order parameter, globally invariant under the center symmetry. We argue that the effective theory possesses only short-range couplings, and hence that the finite-temperature confinement phase transition (when continuous) is accompanied by long-range fluctuations only in the order parameter. Universality ideas then lead to predictions for the critical properties of U(1), Z(N), and SU(N) gauge theories for all dimensionalities of space-time. An explicit renormalization-group calculation is presented for the U(1) gauge theory in (2 + 1) dimensions, the results of which fit the general picture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号