首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linear and star‐like amphiphilic diblock copolymers were synthesized by the ring‐opening polymerization of ε‐caprolactone and γ‐2‐[2‐(2‐methoxyethoxy)ethoxy]ethoxy‐ε‐caprolactone monomers using zinc undecylenate as a catalyst. These polymers have potential applications as micellar drug delivery vehicles, therefore the properties of the linear and 4‐arm star‐like structures were examined in terms of their molecular weight, viscosity, thermodynamic stability, size, morphology, and drug loading capacity. Both the star‐like and linear block copolymers showed good thermodynamic stability and degradability. However, the star‐like polymers were shown to have increased stability at lower concentrations with a critical micelle concentration (CMC) of 5.62 × 10?4 g L?1, which is less than half the concentration of linear polymer needed to form micelles. The star‐like polymeric micelles showed smaller sizes when compared with their linear counterparts and a higher drug loading capacity of doxorubicin, making them better suited for drug delivery purposes. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3601–3608  相似文献   

2.
Thermoresponsive and pH‐responsive graft copolymers, poly(L ‐glutamate)‐g‐oligo(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate) and poly(L ‐glutamic acid‐co‐(L ‐glutamate‐g‐oligo(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate))), were synthesized by ring‐opening polymerization (ROP) of N‐carboxyanhydride (NCA) monomers and subsequent atom transfer radical polymerization of 2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate. The thermoresponsiveness of graft copolymers could be tuned by the molecular weight of oligo(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate) (OMEO3MA), composition of poly(L ‐glutamic acid) (PLGA) backbone and pH of the aqueous solution. The α‐helical contents of graft copolymers could be influenced by OMEO3MA length and pH of the aqueous solution. In addition, the graft copolymers exhibited tunable self‐assembly behavior. The hydrodynamic radius (Rh) and critical micellization concentration values of micelles were relevant to the length of OMEO3MA and the composition of biodegradable PLGA backbone. The Rh could also be adjusted by the temperature and pH values. Lastly, in vitro methyl thiazolyl tetrazolium (MTT) assay revealed that the graft copolymers were biocompatible to HeLa cells. Therefore, with good biocompatibility, well‐defined secondary structure, and mono‐, dual‐responsiveness, these graft copolymers are promising stimuli‐responsive materials for biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
One pot green synthesis of 1‐(1,2,4‐triazol‐4‐yl)spiro[azetidine‐2,3′‐(3H)‐indole]‐2′,4′(1′H)‐diones was carried out by the reaction of indole‐2,3‐diones,4‐amino‐4H‐1,2,4‐triazole and acetyl chloride/chloroacetyl chloride in ionic liquid [bmim]PF6 with/without using a catalyst. It was also prepared by conventional method via Schiff's bases, 3‐[4H‐1,2,4‐triazol‐4‐yl]imino‐indol‐2‐one. Further, the corresponding phenoxy derivatives were obtained by the reaction of chloro group attached to azetidine ring with phenols. The synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR, and FAB mass) data. Evaluation for insecticidal activity against Periplaneta americana exhibited promising results.  相似文献   

4.
Reactions of β‐bromo‐β,γ‐unsaturated pyrroline nitroxide aldehyde ( 1 ) or nitrile ( 4 ) or their diamagnetic forms ( 5, 6 ) with 2‐aminothiophenol or 2‐mercaptobenzimidazole were evaluated. The reaction could be reproduced more easily with the application of O‐acetyl derivatives of nitroxides to generate 2‐substituted‐benzothiazole, pyrrolo[3,4‐b ]benzo[1,5]tiazepine scaffolds with 2‐aminothiophenol and benzimidazo[2,1‐b ]pyrrolo[3,4‐e ]‐[1,3]thiazine scaffold with 2‐mercaptobenzimidazole.  相似文献   

5.
Starting from methyl 2,3‐O‐isopropylidene‐α‐D ‐mannofuranoside ( 5 ), methyl 6‐O‐benzyl‐2,3‐O‐isopropylidene‐α‐D ‐lyxo‐hexofuranosid‐5‐ulose ( 12 ) was prepared in three steps. The addition reaction of dimethyl phosphonate to 12 , followed by deoxygenation of 5‐OH group, provided the 5‐deoxy‐5‐dimethoxyphosphinyl‐α‐D ‐mannofuranoside derivative 15a and the β‐L ‐gulofuranoside isomer 15b . Reduction of 15a and 15b with sodium dihydrobis(2‐methoxyethoxy)aluminate, followed by the action of HCl and then H2O2, afforded the D ‐mannopyranose ( 17 ) and L ‐gulopyranose analog 21 , each having a phosphinyl group in the hemiacetal ring. These were converted to the corresponding 1,2,3,4,6‐penta‐O‐acetyl‐5‐methoxyphosphinyl derivatives 19 and 23 , respectively, structures and conformations (4C1 or 1C4, resp.) of which were established by 1H‐NMR spectroscopy.  相似文献   

6.
The syntheses of nine new 5‐iodosalicylic acid‐based 1,3,4‐oxadiazoline derivatives starting from methyl salicylate are described. These compounds are 2‐[4‐acetyl‐5‐methyl‐5‐(3‐nitrophenyl)‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6a ), 2‐[4‐acetyl‐5‐methyl‐5‐(4‐nitrophenyl)‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6b ), 2‐(4‐acetyl‐5‐methyl‐5‐phenyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl)‐4‐iodophenyl acetate, C19H17IN2O4 ( 6c ), 2‐[4‐acetyl‐5‐(4‐fluorophenyl)‐5‐methyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate, C19H16FIN2O4 ( 6d ), 2‐[4‐acetyl‐5‐(4‐chlorophenyl)‐5‐methyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate, C19H16ClIN2O4 ( 6e ), 2‐[4‐acetyl‐5‐(3‐bromophenyl)‐5‐methyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6f ), 2‐[4‐acetyl‐5‐(4‐bromophenyl)‐5‐methyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6g ), 2‐[4‐acetyl‐5‐methyl‐5‐(4‐methylphenyl)‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6h ) and 2‐[5‐(4‐acetamidophenyl)‐4‐acetyl‐5‐methyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6i ). The compounds were characterized by mass, 1H NMR and 13C NMR spectroscopies. Single‐crystal X‐ray diffraction studies were also carried out for 6c , 6d and 6e . Compounds 6c and 6d are isomorphous, with the 1,3,4‐oxadiazoline ring having an envelope conformation, where the disubstituted C atom is the flap. The packing is determined by C—H…O, C—H…π and I…π interactions. For 6e , the 1,3,4‐oxadiazoline ring is almost planar. In the packing, Cl…π interactions are observed, while the I atom is not involved in short interactions. Compounds 6d , 6e , 6f and 6h show good inhibiting abilities on the human cancer cell lines KB and Hep‐G2, with IC50 values of 0.9–4.5 µM.  相似文献   

7.
Polysaccharides are biorenewable and biodegradable starting materials for the development of functional materials. The synthesis of a monofunctional macroinitiator for single electron transfer‐living radical polymerization was successfully developed from a wood polysaccharide‐O‐acetyl galactoglucomannan (GGM) using a beforehand synthesized amino‐functional α‐bromoisobutyryl derivative applying reductive amination. The GGM macroinitiator was employed to initiate a controlled radical polymerization of [2‐(methacryloyloxy)ethyl]trimethylammonium chloride (MeDMA), methyl methacrylate (MMA), and N‐isopropylacrylamide (NIPAM) using Cu0/Me6‐Tren as a catalyst. The either charged or amphiphilic GGM‐b‐copolymers with different chain lengths of the synthetic block were successfully synthesized without prior hydrophobization of the GGM chain and dimethyl sulfoxide (DMSO) or DMSO/water mixtures were used as solvents. This novel synthetic approach may find untapped potentials particularly for the development of polysaccharide‐based amphiphilic additives for cosmetics or paints and for the design of novel temperature or pH responsive polymers with such potential applications as in drug delivery systems or in biocomposites. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5100–5110  相似文献   

8.
2‐(3,5‐Bis{[1,5,9‐tris(trifluoroacetyl)‐1,5,9‐triazacyclododecan‐3‐yloxy]methyl}phenoxy)ethanol was synthesized and converted to a O‐(2‐cyanoethyl)‐N,N‐diisopropylphosphoramidite building block, 12 . 2′‐O‐Methyl oligoribonucleotides incorporating a 2‐[(2S,4S,5R)‐4‐hydroxy‐5‐(hydroxymethyl)tetrahydrofuran‐2‐yl)ethyl 4‐oxopentanoate or a 2‐{2‐[2‐({[(2R,4S,5R)‐4‐hydroxy‐5‐(hydroxymethyl)tetrahydrofuran‐2‐yl]acetyl}amino)ethoxy]ethoxy}ethyl 4‐oxopentanoate non‐nucleosidic unit close to the 3′‐terminus were assembled on a solid support, the 4‐oxopentanoyl protecting groups were removed by treatment with hydrazinium acetate on‐support, and 12 was coupled to the exposed OH function. The deprotected conjugates were purified by HPLC, and their ability to cleave a complementary RNA containing either uridine or some other nucleoside at the potential cleaving site was compared. Somewhat unexpectedly, conjugation to an oligonucleotide did not enhance the catalytic activity of the Zn2+? bis(azacrown) complex and virtually abolished its selectivity towards the uridine sites.  相似文献   

9.
A new high‐sensitive photo‐radical initiator, N‐[2‐(2‐acryloyloxyethoxy)ethyl]‐1,8‐naphthalimide (NI6), with good thermal stability based on naphthylimide derivative was developed. NI6 was prepared by the condensation of N‐[2‐(2‐hydroxyethoxy)ethyl]‐1,8‐naphthalimide and acryloyl chloride in the presence of 4‐dimethylaminopyridine. The film consisting of NI6 and pentaerythritol triacrylate (PETA) showed higher photosensitivity than those containing conventional photo‐radical initiators such as acrylic acid 2‐(2‐{2‐[2‐(4‐benzoyl‐phenoxy)‐ethoxy]‐ethoxy}‐ethoxy)‐ethyl ester, cyclohexylmaleimide, and the resulting film exhibited very high transmittance over 400 nm. The thermal stability of NI6 was very high and no decomposed residues were observed from the film consisting of NI 6 after heating at 250 °C for 1 h. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5571–5580, 2005  相似文献   

10.
Condensation of 2‐amino‐5‐phenyl‐5H‐thiazolo[4,3‐b] [1,3,4] thiadiazoles ( 1 ) with some carboxylic acid derivatives furnished corresponding compounds 2–4 , respectively. Alkylation of 1 with benzoylchloride and 4‐chlorobenzyl chloride afforded thiazolo[4,3‐b][1,3,4]thiadiazole derivatives 5 and 6 , respectively. Similarly, transformation of 1 with chloroacetyl chloride yielded chloroacetamide derivative 7 . The later compound was subjected to react with potassium thiocyanate or piperazine whereby, the binary thiazolidinone derivative 8 and N 1 ,N4‐disubstituted piperazine 9 were produced, respectively. Also, the reactivity of 1 toward various active methylene reagents was investigated. Accordingly, our attempts to synthesize the tricyclic heterocyclic system 10 , 11′ , 12 by reaction of 1 with chloroacetonitrile, 4‐oxo‐4‐phenylbutanoic acid and/or diethylmalonate in presence of acetyl chloride was furnished 10 , 11 , and 12 . The newly synthesized compounds were screened as antimicrobial agent.  相似文献   

11.
Self‐assembly of poly(3‐hexylthiophene) ( P3HT) driven by π–π stacking, combined with “Host‐Guest Chemistry” of ethylene glycol oligomer and lithium ion is demonstrated using a thiophene‐based all conjugated amphiphilic block copolymer, containing 93 mol % of P3HT and 7 mol % of poly(3‐(2‐(2‐{2‐[2‐(2‐methoxy‐ethoxy)‐ethoxy]‐ethoxy}‐ethyl))thiophene), P3EGT blocks. An ion chelating ability of ethylene glycol oligomers with lithium ions in the P3EGT block is confirmed using 1H‐NMR spectrometry. This method could allow positioning lithium ions at the interface between P3HT domains and PC61BM clusters, confirmed using XRD and photoluminescence quenching experiments. The compact lamellar P3HT domains by side repulsion driven self‐assembly of amphiphilic block copolymer and the molecular engineering of the interface with an optimized lithium contents are resulted in the improvement of photovoltaic performance in an organic solar cell (2.1–3.0%). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1068–1074  相似文献   

12.
Some 1,4‐phenylene‐bis[1,2,4]oxadiazolo‐[5,4‐d][1,5]benzothiazepine derivatives ( 4a , 4b , 4c ) were synthesized by 1,3‐dipolar cycloaddition reaction of benzohydroximinoyl chloride with 1,4‐phenylene‐bis(4‐aryl)‐2,3‐dihydro[1,5]benzothiazepine ( 2a , 2b , 2c ); meanwhile, compounds 2a , 2b , 2c also occurred ring contraction under acylating condition to obtain bis[2‐aryl‐2′‐(β‐1,4‐phenylenevinyl)‐3‐acetyl]‐2,3‐dihydro[1,5]benzothiazoles ( 3a , 3b , 3c ). The structures of some novel compounds were confirmed by IR, 1H‐NMR, elemental, and X‐ray crystallographic analysis.  相似文献   

13.
A study on the synthesis of the novel N‐(cyclic phosphonate)‐substituted phosphoramidothioates, i.e., O,O‐diethyl N‐[(trans‐4‐aryl‐5,5‐dimethyl‐2‐oxido‐2λ5‐1,3,2‐dioxaphosphorinan‐2‐yl)methyl]phosphoramidothioates 4a – l , from O,O‐diethyl phosphoramidothioate ( 1 ), a benzaldehyde or ketone 2 , and a 1,3,2‐dioxaphosphorinane 2‐oxide 3 was carried out (Scheme 1 and Table 1). Some of their stereoisomers were isolated, and their structure was established. The presence of acetyl chloride was essential for this reaction and accelerated the process of intramolecular dehydration of intermediate 5 forming the corresponding Schiff base 7 (Scheme 2).  相似文献   

14.
N‐Isopropylacryamide was copolymerized by free‐radical polymerization with N‐[2‐(4‐phenylazophenoxy)ethyl]acrylamide derivatives that were substituted at their 4′‐position with ethoxy, methoxyethoxy, or isopropyl units, or with N‐{2‐[4‐(pyridin‐2‐ylazo)phenoxy]ethyl}acrylamide. The polymers were soluble in cold water and possessed lower critical solution temperatures (LCSTs). The value of the LCST rose a few degrees after UV irradiation and dropped after irradiation with visible light, reversibly, in processes that corresponded to the isomerization of the azobenzene units. The polymers became increasingly hydrophobic after increasing their azobenzene content. The difference of hydrophobicity correlates with the absorption band height at about 400 nm. The structure of the substituent on the azobenzene unit affected both the transition temperature and the hydrophobicity. A change in photoinduced wettability for water was observed to occur on a prepared film at a temperature different from the LCST determined in water. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5200–5214, 2004  相似文献   

15.
Methyl E/Z‐pyropheophorbide‐a 131‐ketoximes 2a,b and their O‐acetyl derivatives 3a,b were oxidized with osmium(VIII) oxide to give aldehydes 4a,b and 5a,b , respectively. The Wittig reactions of the aldehyde chlorines 4a,b and 5a,b with benzyltriphenylphosphonium chloride were performed to form the corresponding methyl (31E/Z,131E/Z)‐32‐phenylpyropheophorbide‐a 131‐ketoximes 6aa‐bb and their O‐acetyl derivatives 7aa‐bb ; hydrolysis of these ketoximes 6aa,ba and 6ab,bb in formic acid produced methyl (E/Z)‐32‐phenylpyropheophorbide‐a's 8a,b .  相似文献   

16.
Kumada‐Tamao coupling polymerization of 6‐bromo‐3‐chloromagnesio‐2‐(3‐(2‐methoxyethoxy)propyl)pyridine 1 with a Ni catalyst and Suzuki‐Miyaura coupling polymerization of boronic ester monomer 2 , which has the same substituted pyridine structure, with tBu3PPd(o‐tolyl)Br were investigated for the synthesis of a well‐defined n‐type π‐conjugated polymer. We first carried out a model reaction of 2,5‐dibromopyridine with 0.5 equivalent of phenylmagnesium chloride in the presence of Ni(dppp)Cl2 and then observed exclusive formation of 2,5‐diphenylpyridine, indicating that successive coupling reaction took place via intramolecular transfer of Ni(0) catalyst on the pyridine ring. Then, we examined the Kumada‐Tamao polymerization of 1 and found that it proceeded homogeneously to afford soluble, regioregular head‐to‐tail poly(pyridine‐2,5‐diyl), poly(3‐(2‐(2‐(methoxyethoxy)propyl)pyridine) (PMEPPy). However, the molecular weight distribution of the polymers obtained with several Ni and Pd catalysts was very broad, and the matrix‐assisted laser desorption ionization time‐of‐flight mass spectra showed that the polymer had Br/Br and Br/H end groups, implying that the catalyst‐transfer polymerization is accompanied with disproportionation. Suzuki‐Miyaura polymerization of 2 with tBu3PPd(o‐tolyl)Br also afforded PMEPPy with a broad molecular weight distribution, and the tolyl/tolyl‐ended polymer was a major product, again indicating the occurrence of disproportionation. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
A conjugated polymer was synthesized by the polymerization of 4,7‐dibromobenzo[2,1,3]thiadiazole ( M‐1 ) with tri{1,4‐diethynyl‐2,5‐bis(2‐(2‐methoxyethoxy)‐ethoxy)}‐benzene ( M‐2 ) via Pd‐catalyzed Sonogashira reaction. The polymer shows strong orange fluorescence. The responsive optical properties of the polymer on various metal ions were investigated through photoluminescence and UV–vis absorption measurements. The polymer displays highly sensitive and selective on‐off Hg2+ fluorescence quenching property in tetrahydrofuran solution in comparison with the other cations including Mg2+, Zn2+, Co2+, Ni2+, Cu2+, Ag+, Cd2+, and Pb2+. More importantly, the fluorescent color of the polymer sensor disappears after addition of Hg2+, which could be easily detected by naked eyes. The results indicate that this kind of polymer sensor incorporating benzo[2,1,3]thiadiazole moiety as a ligand can be used as a novel colorimetric and fluorometric sensor for Hg2+ detection. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
The X‐ray analyses of 2,3,4,6‐tetra‐O‐acetyl‐α‐d ‐glucopyranosyl fluoride, C14H19FO9, (I), and the corresponding maltose derivative 2,3,4,6‐tetra‐O‐acetyl‐α‐d ‐glucopyranosyl‐(1→4)‐2,3,6‐tri‐O‐acetyl‐α‐d ‐glucopyranosyl fluoride, C26H35FO17, (II), are reported. These add to the series of published α‐glycosyl halide structures; those of the peracetylated α‐glucosyl chloride [James & Hall (1969). Acta Cryst. A 25 , S196] and bromide [Takai, Watanabe, Hayashi & Watanabe (1976). Bull. Fac. Eng. Hokkaido Univ. 79 , 101–109] have been reported already. In our structures, which have been determined at 140 K, the glycopyranosyl ring appears in a regular 4C1 chair conformation with all the substituents, except for the anomeric fluoride (which adopts an axial orientation), in equatorial positions. The observed bond lengths are consistent with a strong anomeric effect, viz. the C1—O5 (carbohydrate numbering) bond lengths are 1.381 (2) and 1.381 (3) Å in (I) and (II), respectively, both significantly shorter than the C5—O5 bond lengths, viz. 1.448 (2) Å in (I) and 1.444 (3) Å in (II).  相似文献   

19.
A new method to prepare the polymer electrolytes for lithium‐ion batteries is proposed. The polymer electrolytes were prepared by reacting poly(phosphazene)s (MEEPP) having 2‐(2‐methoxyethoxy)ethoxy and 2‐(phenoxy)ethoxy units with 2,4,6‐tris[bis(methoxymethyl)amino]‐1,3,5‐triazine (CYMEL) as a cross‐linking agent. This method is simple and reliable for controlling the cross‐linking extent, thereby providing a straightforward way to produce a flexible polymer electrolyte membrane. The 6 mol % cross‐linked polymer electrolyte (ethylene oxide unit (EO)/Li = 24:1) exhibited a maximum ionic conductivity of 5.36 × 10?5 S cm?1 at 100 °C. The 7Li linewidths of solid‐state static NMR showed that the ionic conductivity was strongly related to polymer segment motion. Moreover, the electrochemical stability of the MEEPP polymer electrolytes increased with an increasing extent of cross‐linking, the highest oxidation voltage of which reached as high as 7.0 V. Moreover, phenoxy‐containing polyphosphazenes are very useful model polymers to study the relationship between the polymer flexibility; that is, the cross‐linking extent and the mobility of metal ions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 352–358  相似文献   

20.
A novel cyclic ether monomer 3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy‐methyl}‐3′‐methyloxetane (HEMO) was prepared from the reaction of 3‐hydroxymethyl‐3′‐methyloxetane tosylate with triethylene glycol. The corresponding hyperbranched polyether (PHEMO) was synthesized using BF3·Et2O as initiator through cationic ring‐opening polymerization. The evidence from 1H and 13C NMR analyses revealed that the hyperbranched structure is constructed by the competition between two chain propagation mechanisms, i.e. active chain end and activated monomer mechanism. The terminal structure of PHEMO with a cyclic fragment was definitely detected by MALDI‐TOF measurement. A DSC test implied that the resulting polyether has excellent segment motion performance potentially beneficial for the ion transport of polymer electrolytes. Moreover, a TGA assay showed that this hyperbranched polymer possesses high thermostability as compared to its liquid counterpart. The ion conductivity was measured to reach 5.6 × 10?5 S/cm at room temperature and 6.3 × 10?4 S/cm at 80 °C after doped with LiTFSI at a ratio of Li:O = 0.05, presenting the promise to meet the practical requirement of lithium ion batteries for polymer electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3650–3665, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号