首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Black single crystals with metallic luster of (Sr3N2/3–x)E (E = Sn, Pb) and (Sr3N)Sb were grown in lithium flux from strontium nitride, Sr2N, and tin, lead, or antimony, respectively. Nitrogen deficiency in the tin and the lead compound is a result of the higher ionic charge of the tetrelide ions E4– as compared to the antimonide ion Sb3–. In contrast to microcrystalline samples from solid state sinter reactions obtained earlier, the flux synthesis induces nitrogen order in the nitrogen deficient tetrelides. The antimony compound crystallizes as inverse cubic perovskite [a = 517.22(5) pm, Z = 1, space group Pm3 m, no. 221] with fully occupied nitrogen site, whereas the nitrogen deficient tin and lead compounds exhibit partially ordered arrangements and a certain phase width in respect to nitrogen contents. For the tetrelides, the nitrogen order leads to a cubic 2 × 2 × 2 superstructure [E = Sn: a = 1045.64(8) pm for x = 0, a = 1047.08(7) pm for x = 0.08; and E = Pb: a = 1050.7(1) pm for x = 0, space group Fm3 m, no. 225] as derived from single‐crystal X‐ray diffraction data. The metallic tetrelides show diamagnetic behavior, which is consistent with electronic structure calculations.  相似文献   

2.
The binary thorium tritelluride, α‐ThTe3, was synthesized by solid‐state methods at 1223 K. From a single‐crystal X‐ray diffraction study the material crystallizes in the TiS3 structure type with two formula units in space group C22hP21/m of the monoclinic system in a cell with lattice constants a = 6.1730 (4) Å, b = 4.3625(3) Å, c = 10.4161(6) Å, and β = 97.756(3)° (at 100 K). The asymmetric unit of this compound comprises one Th atom and three Te atoms each with site symmetry m. Each Th atom is coordinated to eight Te atoms in a bicapped trigonal‐pyramidal arrangement. Th–Te distances range from 3.1708(4) Å to 3.2496(6) Å. The structure features a Te–Te interaction 2.7631(8) Å in length, which is typical for a Te–Te single bond. Thus α‐ThTe3 may be charge balanced and formulated as Th4+Te2–Te22–.  相似文献   

3.
Single crystals of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 have been synthesized by evaporation from an aqueous solution of the ionic components. The structure of α‐Mg2[(UO2)3(SeO4)5](H2O)16 (monoclinic, C2/c, a = 19.544(3), b = 10.4783(11), c = 18.020(3) Å, β = 91.352(12)°, V = 3689.3(9) Å3) has been solved by direct methods and refined to R1 = 0.048 on the basis of 4338 unique observed reflections. The structure of β‐Mg2[(UO2)3(SeO4)5](H2O)16 (orthorhombic, Pbcm, a = 10.3807(7), b = 22.2341(19), c = 33.739(5) Å, V = 7787.2(14) Å3) has been solved by direct methods and refined to R1 = 0.107 on the basis of 3621 unique observed reflections. The structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 are based upon sheets with the chemical composition [(UO2)3(SeO4)5]4‐. The sheets are formed by corner sharing between pentagonal bipyramids [UO7]8‐ and SeO42‐ tetrahedra. In the α‐modification, the [(UO2)3(SeO4)5]4‐ sheets are more or less planar and run parallel to (001). In the structure of the β‐modification, the uranyl selenate sheets are strongly corrugated and oriented parallel to (010). The [Mg(H2O)6]2+ polyhedra reside in the interlayers and provide three‐dimensional linkage of the uranyl selenate sheets via hydrogen bonding. In addition to H2O groups attached to Mg2+ cations, both structures also contain H2O molecules that are not bonded to any cation. The [(UO2)3(SeO4)5]4‐ sheets in the structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 represent two different structural isomers. The sequences of the orientations of the tetrahedra within the sheets can be described by their orientational matrices with their shortened forms ( ddudd □ /uu □ uud ) and ( dd □ dd □ uu □ uu □ /uuduumdduddm ) for α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16, respectively. A short review on the isomerism of [(UO2)3(TO4)5]4‐ sheets (T = S, Cr, Se, Mo) is given.  相似文献   

4.
The reaction of [(η5‐L3)Ru(PPh3)2Cl], where; L3 = C9H7 ( 1 ), C5Me5 (Cp*) ( 2 ) with acetonitrile in the presence of [NH4][PF6] yielded cationic complexes [(η5‐L3)Ru(PPh3)2(CH3CN)][PF6]; L3= C9H7 ([3]PF6) and L3 = C5Me5 ([4]PF6), respectively. Complexes [3]PF6 and [4]PF6 reacts with some polypyridyl ligands viz, 2,3‐bis (α‐pyridyl) pyrazine (bpp), 2,3‐bis (α‐pyridyl) quinoxaline (bpq) yielding the complexes of the formulation [(η5‐L3)Ru(PPh3)(L2)]PF6 where; L3 = C9H7, L2 = bpp, ([5]PF6), L3 = C9H7, L2 = bpq, ([6]PF6); L3 = C5Me5, L2 = bpp, ([7]PF6) and bpq, ([8]PF6), respectively. However reaction of [(η5‐C9H7)Ru(PPh3)2(CH3CN)][PF6] ([3]PF6) with the sterically demanding polypyridyl ligands, viz. 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine (tptz) or tetra‐2‐pyridyl‐1,4‐pyrazine (tppz) leads to the formation of unexpected complexes [Ru(PPh3)2(L2)(CH3CN)][PF6]2; L2 = tppz ([9](PF6)2), tptz ([11](PF6)2) and [Ru(PPh3)2(L2)Cl][PF6]; L2 = tppz ([10]PF6), tptz ([12]PF6). The complexes were isolated as their hexafluorophosphate salts. They have been characterized on the basis of micro analytical and spectroscopic data. The crystal structures of the representative complexes were established by X‐ray crystallography.  相似文献   

5.
6.
The structures of two derivatives of the title compound [C24H22N2OS, Mr = 386. 5 for (1); C25H22N2O3S, Mr = 430. 5 for (2)] were determined by using X-ray single-crystal strcuture analysis method. The final discrepancies are R = 0. 071 and 0. 077, respectively, for the reflections measured on a four-circle diffractometer. The space group for compound (1) is P bca with a=1. 6639(4), b=2.0286(3), c= 1.1742(1) nm, V = 3. 964(1) nm3, F(000) = 1632 e, Z=8; and (2) belongs to P21/n space group, and the cell dimensions are a=1. 1115(4), b=0. 8932(7), c=2. 186(3) nm, β=97. 52 (1)°? V=2.151(4) nm3, F(000) = 904 e, Z=4.The molecular backbones are very similar, each is a tricyclic system. The central seven-membered ring is in a twisted-boat conformation, and is cis-fused to 1,2,4-oxa-diazolino ring, while the latter moiety is in an envelope form. There are conjugated but non-coplanar effects in each structure. All bond lengths and angles in the molecules are normally acceptable. The crystal structure on the whol  相似文献   

7.
NbOI3 was obtained from a reaction of Nb2O5, Nb, and I2. Single crystals free from disorder were a by‐product from a reaction with additional CsI. The monoclinic crystal structure (C2, a = 14.624(3) Å, b = 3.9905(8) Å, c = 12.602(3) Å, β = 120.4(3)°, Z = 4, R1(F) = 0.0368, wR2(F2) = 0.0804) represents a new structure type which is built up by distorted octahedral NbI4O2 with unequal O‐atoms in trans‐position. The octahedra are linked to dimers by a common edge of iodine atoms and to double chains by the apical oxygen atoms. A non‐centrosymmetric structure results because the short Nb–O distances point to the same direction and the polar double chains are parallel. The crystal structure of NbOBr3 (NbOCl3‐type, , a = 11.635(6) Å, c = 3.953(2) Å, R1(F) = 0.082, wR2(F2) = 0.174) shows the same polar double chains but the dimeric units Nb2Br6O2 are orthogonal.  相似文献   

8.
Abstract. Two coordination polymers, namely, [Zn(bpe)0.5(Htbip)(tbip)0.5] · H2O ( 1 ) and [Cd(bpe)0.5(tbip)] ( 2 ) [H2tbip = 5‐tert‐butylisophthalic acid and bpe = 1, 2‐ bis(4‐pyridyl) ethane] were synthesized through hydrothermal reactions. Single‐crystal X‐ray diffraction analysis reveals that complex 1 presents a three‐dimensional (3D) six‐connected uninodal structure with the type of topology of svi‐x/I4/mcmIbam, whereas complex 2 holds a 2D 44sql layer structure. Moreover, the photoluminescent properties of the complexes at room temperature were investigated.  相似文献   

9.
The binary silicides Eu5Si3 and Yb3Si5 were prepared from the elements in sealed tantalum tubes and their crystal structures were determined from single crystal X-ray data: I4/mcm, a = 791.88(7) pm, c = 1532.2(2) pm, Z = 4, wR2 = 0.0545, 600 F2 values, 16 variables for Eu5Si3 (Cr5B3-type) and P62m, a = 650.8(2) pm, c = 409.2(1) pm, Z = 1, wR2 = 0.0427, 375 F2 values, 12 variables for Yb3Si5 (Th3Pd5 type). The new silicide Eu5Si3 contains isolated silicon atoms and silicon pairs with a Si–Si distance of 242.4 pm. This silicide may be described as a Zintl phase with the formula [5 Eu2+]10+[Si]4–[Si2]6–. The silicon atoms in Yb3Si5 form a two-dimensional planar network with two-connected and three-connected silicon atoms. According to the Zintl-Klemm concept the formula of homogeneous mixed-valent Yb3Si5 may to a first approximation be written as [3 Yb]8+[2 Si]2–[3 Si2–]6–. Magnetic susceptibility investigations of Eu5Si3 show Curie-Weiss behaviour above 100 K with a magnetic moment of 7.85(5) μB which is close to the free ion value of 7.94 μB for Eu2+. Chemical bonding in Eu5Si3 and Yb3Si5 was investigated by semi-empirical band structure calculations using an extended Hückel hamiltonian. The strongest bonding interactions are found for the Si–Si contacts followed by Eu–Si and Yb–Si, respectively. The main bonding characteristics in Eu5Si3 are antibonding Si12-π* and bonding Eu–Si1 states at the Fermi level. The same holds true for the silicon polyanion in Yb3Si5.  相似文献   

10.
Transparent orange‐red crystals of [Yb(MeCp)2(O2CPh)]2 obtained by oxidation of Yb(MeCp)2 with Tl(O2CPh) in tetrahydrofuran have a dimeric structure with bridging bidentate (O,O′)‐benzoate groups and eight‐coordinate ytterbium.  相似文献   

11.
Thallium sesquibromide Tl2Br3 is dimorphic. Scarlet coloured crystals of α‐Tl2Br3 were obtained by reactions of aqueous solutions of TlBr3 and Tl2SO4 in agarose gel. In case of rapid crystallisation of hydrous TlBr3/TlBr solutions and from TlBr/TlBr2 melts ß‐Tl2Br3 is formed as scarlet coloured, extremely thin lamellae. The crystal structures of both forms are very similar and can be described as mixed‐valence thallium(I)‐hexabromothallates(III) Tl3[TlBr6]. In the monoclinic unit cell of α‐Tl3[TlBr6] (a = 26.763(7) Å; b = 15.311(6) Å; c = 27.375(6) Å; β = 108.63(2)°, Z = 32, space gr. C2/c) the 32 TlIII‐cations are found in strongly distorted octahedral TlBr6 groups. The 96 TlI cations are surrounded either by four or six TlBr6 groups with contacts to 8 or 9 Br neighbors. Crystals of β‐Tl3[TlBr6] by contrast show almost hexagonal metrics (a = 13.124(4) Å, b = 13.130(4) Å, c = 25.550(7) Å, γ = 119.91(9)°, Z = 12, P21/m). Refinements of the parameters revealed structural disorder of TlBr6 units, possibly resulting from multiple twinning. Both structures are composed of Tl2[TlBr6] and Tl4[TlBr6]+ multilayers, which alternate parallel (001). The structural relationships of the complicated structures of α‐ and β‐Tl3[TlBr6] to the three polymorphous forms of Tl2Cl3 as well as to the structures of monoclinic hexachlorothallates M3TlCl6 (M = K, Rb) and the cubic elpasolites are discussed.  相似文献   

12.
Oxidation of Co(thd)2 dissolved in different solvents has been investigated in air and oxygen atmosphere. In oxygen atmosphere and at the boiling point of the solvents this treatment leads to oxidation of CoII to CoIII, but also to degradation of some of the thd ligands and formation of a new mixed‐ligand complex. Three pure‐cultivated crystalline Co(thd)3 phases are reported: 1 (room‐temperature phase), 2 (low‐temperature phase), and 3 (metastable phase) and in addition there exists an amorphous Co(thd)3 phase ( 4 ) with approximate composition Co(thd)3·xH(thd); x = 0.06. Reaction of metal(II) oxides (MO, M = Mn, Fe, and Co) with H(thd) under air or O2 atmosphere is an easy direct route to M(thd)3 complexes. Structure determinations are reported for Co(thd)3 ( 1 – 3 ) based on single‐crystal X‐ray diffraction data. Modification 1 crystallizes in space group with a = b = 18.8100(10), c = 18.815(2) Å at 295 K; R(wR2) = 0.180, modification 2 in space group C2/c with a = 28.007(12), b = 18.482(8), c = 21.356(9) Å, β = 97.999(5)° at 100 K; R(wR2) =0.211, and modification 3 in space group Pnma with a = 19.2394(15), b = 18.8795(15), c = 10.7808(8) Å at 100 K; R(wR2) = 0.193. The molecular structures of 1 – 3 all comprise a central Co atom octahedrally co‐ordinated by the ketonato O atoms of three thd ligands. The transformation between modifications 1 and 2 is of a fully reversible second‐order character. Modifications 1 and 3 are, on the other hand, related by a quasi‐reversible cycle. Heat treatment (specifically sublimation) of 1 leads to 3 whereas re‐crystallization or prolonged storage at room temperature is required to regenerate 1 . Co(thd)3 has sufficient thermal stability to permit sublimation without degradation. The various forms of Co(thd)3 are all diamagnetic, viz. a confirmation of the CoIII valence state.  相似文献   

13.
Structural Chemistry and Magnetic Properties of Ho3+‐β″‐Al2O3(Ho0, 5Mg0, 5Al10, 5O17) The crystal structure of Ho3+‐β″‐Al2O3(Ho0, 5Mg0, 5Al10, 5O17) was determined by single crystal X‐ray diffraction methods at room temperature (trigonal, R3¯m, Z = 3, a = 561.43(12) pm, c = 3353.7(11) pm). The structural chemical results are correlated with magnetic measurements, where ligand field calculations applying the angular overlap model have been taken into account.  相似文献   

14.
Synthesis and Molecular Structure of [{Cp′(μ‐η1 : η5‐C5H3Me)Mo(μ‐AlRH)}2] (Cp′ = C5H4Me, R = iBu, Et) [Cp′2MoH2] reacts with HAlR2 to give [{Cp′(μ‐η1 : η5‐C5H3Me)Mo(μ‐AlRH)}2] (Cp′ = C5H4Me, R = iBu ( 1 ), Et ( 2 )). Crystal structure determinations were carried out on [Cp′2MoH2] and 1 . 1 exhibits a direct Mo–Al bond (2.636(2) Å).  相似文献   

15.
The stoichiometric reaction of copper(II) hydroxycarbonate, iminodiacetic acid (H2IDA = HN(CH2CO2H)2) and α‐picolinamide (pya) in water yields crystalline samples of (α‐picolinamide)(iminodiacetato)copper(II) dihydrate, [Cu(IDA)(pya)] · 2 H2O ( 1 ). The compound was characterised by thermal (TG analysis with FT‐IR study of the evolved gasses), spectral (IR, electronic and ESR spectra), magnetic and single crystal X‐ray diffraction methods. It crystallises in the triclinic system, space group P1, a = 8.8737(4), b = 10.23203(5), c = 15.7167(11) Å, α = 77.61(1)°, β = 103.89(1)°, γ = 80.32(1)°, Z = 4, final R1 = 0.056. The asymmetric unit contains two crystallographic independent molecules but chemically very similar ones. The CuII atom exhibits a square base pyramidal coordination (type 4 + 1). pya acts as N,O‐bidentate ligand supplying two among the four closest donor atoms of the metal [averaged bond distances (Å): Cu–N = 1.982(2), Cu–O(amide) = 1.972(2)]. IDA plays a N,O,O′‐terdentate chelating role [averaged bond distances (Å): Cu–N = 2.004(3), Cu–O = 1.941(2) and Cu–O = 2.242(2)]. The coordinating behaviour of pya in 1 is discussed on the basis of its N,O‐bidentate chelating role and the preference of the ‘Cu‐iminodiacetato' moiety [Cu(IDA)] to link the N‐heterocyclic donor of pya in trans versus the Cu–N(IDA) bond. Consistently the ligand pya is able to impose a fac‐chelating configuration to IDA one around the copper(II) as previously has been reported to mixed‐ligand complexes having a 1/1/2 CuII/IDA/N(heterocyclic) donor ratio or a closely related 1/1/1/1 CuII/IDA/N(heterocyclic)/N(aliphatic) one.  相似文献   

16.
The new quinary fluoride‐rich rubidium scandium oxosilicate Rb3Sc2F5Si4O10 was obtained from mixtures of RbF, ScF3, Sc2O3 and SiO2 in sealed platinum ampoules after seventeen days at 700 °C. The colourless compound crystallises orthorhombically in space group Pnma with a = 962.13(5), b = 825.28(4), c = 1838.76(9) pm and Z = 4. For the oxosilicate partial structure, [SiO4]4– tetrahedra are connected in (001) by vertex‐sharing to form corrugated unbranched vierer single layers ${2}\atop{{\infty}}$ {[Si4O10]4–} (d(Si–O) = 158–165 pm, ∠(O–Si–O) = 103–114°, ∠(Si–O–Si) = 125–145°) containing six‐membered rings. Similar oxosilicate layers with 63‐net topology are well‐known for the mineral group of micas or in sanbornite Ba2Si4O10. Regarding other systems, identical tetrahedral layers can be found in the synthetic borophosphate Mg(H2O)2[B2P2O8(OH)2] · H2O. The Sc3+ cations are coordinated octahedrally by four F and two O2– anions. These cis‐[ScF4O2]5– octahedra (d(Sc–F) = 200–208 pm, d(Sc–O) = 202–205 pm) share one equatorial and two apical F anions with others to build up slightly corrugated ${1}\atop{{\infty}}$ {[Sc2F${t}\atop{2/1}$ F${v}\atop{6/2}$ O${t}\atop{4/1}$ ]7–} double chains along [010]. These are linked with the oxosilicate layers via two oxygen vertices to construct a three‐dimensional framework with cavities apt to host the three crystallographically independent Rb+ cations with coordination numbers of eleven, twelve and thirteen.  相似文献   

17.
In this research, the effects of doping Lu2O3 to α‐Bi2O3 in the range of 0.01 < x < 0.10 in a series of different mole fractions (1% < n < 10% mole ratios) was studied. Beside, heat treatment was performed by applying a cascade temperature rise in the range of 700‐800 °C for 72 hours and new phases were obtained in the (Bi2O3)1‐x(Lu2O3)x system. After heat treatment for 72 hours at 800 °C; mixtures, containing 2‐8% mole Lu2O3, formed a tetragonal phase. As a result of subjecting mixtures, containing 9% and 10% mole Lu2O3, to a quenching process at 825 °C, tetragonal phases were obtained. With the help of XRD, the crystal systems and lattice parameters of the solid solutions were obtained and their characterization was carried out. Thermal measurements were made by using a simultaneous DTA/TG system. The total conductivity (σT) in the β‐Bi2O3 doped with Lu2O3 was measured using the four‐probe DC method.  相似文献   

18.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   

19.
Crystal structures of the compounds SmCu1+δAs2—χPχ (δ = 0 — 0.2, χ = 0 — 2) undergoing symmetry‐breaking transitions and SmCuP2.3 have been investigated by the X‐ray single crystal and powder methods. While the phases SmCuAs2 through SmCuAs1.22P0.78 retain the tetragonal HfCuSi2 structure (P4/nmm space group), the compounds SmCuAs1.11P0.89 through SmCuAs0.56P1.44 adopt the GdCuAs1.15P0.85—type structure (Pmmn space group), an orthorhombic variant of the HfCuSi2‐type. Further distortion follows in SmCuAs0.33P1.67 through SmCuP2.3, the powder patterns of which were indexed in the P2/n space group (P2/c in a standard setting). According to Landau theory the transitions from tetragonal SmCuAs1.22P0.78 to orthorhombic SmCuAs1.11P0.89 and from orthorhombic SmCuAs0.56P1.44 to monoclinic SmCuAs0.33P1.67 can be continuous. Introducing extra copper into some of the orthorhombic arsenophosphides restabilizes tetragonal phases (0 < δ ≤ 0.2) with the P4/nmm symmetry, and the reverse transition PmmnP4/nmmcan be continuous. Inserting copper atoms into monoclinic SmCuP2 yields the SmCu1+δP2 phosphides with Cmmm symmetry, and this transition is first‐order. Single crystals of SmCu1.05As1.67P0.33, SmCu1.07As0.85P1.15 and SmCu1.15P2 have been prepared using iodine as a mineralizing agent. Their structures have partially occupied Cu sites around the square As/P or P layers and they are a stuffed variant of the HfCuSi2 structure for SmCu1.05As1.67P0.33 (P4/nmm, a = 3.9163(6), c = 9.932(2)Å), a stuffed GdCuAs1.15P0.85 structure for SmCu1.07As0.85P1.15 (Pmmn, a = 3.859(1), b = 3.862(1), c = 9.852(3)Å) and a CeCu1.12P1.97‐type structure for SmCu1.15P2 (Cmmm, a = 5.453(3), b = 19.511(10), c = 5.439(3)Å). The P net in SmCu1.15P2 is broken into rectangular units. The results of magnetic measurements for SmCuAsP are reported.  相似文献   

20.
Abstract: Two new lead azide halides, PbN3X (X = Cl, Br), were precipitated from aqueous solutions and structurally analyzed by both X-ray single-crystal/powder diffraction and vibrational spectroscopy, in addition to density-functional theory calculations. PbN3Cl crystallizes in the monoclinic space group P21/m (no. 11) with a = 5.5039(11), b = 4.3270(9), c = 7.6576(15) Å, β = 101.28(3)° and adopts a structure with alternating layers of cations and anions. PbN3Br crystallizes in the orthorhombic space group Pnma (no. 62) with a = 7.9192(2), b = 4.2645(1), c = 11.1396(3) Å, and the cations and anions are alternating crosswise. Within PbN3Cl, a Pb2+ cation is surrounded by five azide and four chloride anions whereas, in PbN3Br, the coordination consists of five azide and three bromide anions. Both structures contain chain-like [Pb2X2]2+ units with Pb–Cl = 2.95–3.21 Å and Pb–Br = 3.03–3.38 Å, and the N3 dumbbell is capped by five Pb2+ with Pb–N = 2.79–2.91 Å in PbN3Cl and with Pb–N = 2.69–2.89 Å in PbN3Br. The infrared and Raman spectra show the typical frequencies of a slightly asymmetric N3 unit, in good agreement with DFT phonon calculation. Thermal analyses reveal PbN3Cl to be stable up to 290 °C before it explodes to yield PbCl2, metallic Pb, and gaseous N2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号