首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The zwitterionic λ5Si‐silicates [(dimethylammonio)methyl]bis[methanecarboxylatothiolato(2–)‐O,S]silicate ( 9 ) and bis[benzene‐1‐carboxylato‐2‐thiolato(2–)‐O,S][(dimethylammonio)methyl]silicate ( 10 ) were synthesized by treatment of the zwitterionic λ5Si‐tetrafluorosilicate F4SiCH2NMe2H with two molar equivalents of Me3SiSCH2C(O)OSiMe3 and 1,2‐Me3SiS–C6H4–C(O)OSiMe3, respectively (formation of four molar equivalents of Me3SiF). Compounds 9 and 10 were characterized by elemental analyses (C, H, N, S) and solid‐state NMR studies (13C, 29Si). In addition, compound 10 was structurally characterized by single‐crystal X‐ray diffraction.  相似文献   

2.
Reaction of tetramethoxysilane with three molar equivalents of oxalic acid and two molar equivalents of 1‐(2‐hydroxyethyl)‐pyrrolidine or 1‐(2‐hydroxyethyl)piperidine in tetrahydrofuran yielded the λ6Si‐silicates 1‐(2‐hydroxyethyl)pyrrolidinium tris[oxalato(2—)]silicate ( 4 ) and 1‐(2‐hydroxyethyl)piperidinium tris[oxalato(2—)]silicate ( 5 ). The related germanium compounds 1‐(2‐hydroxyethyl)piperidinium tris[oxalato(2—)]germanate ( 6 ) and triethylammonium tris[oxalato(2—)]germanate ( 7 ) were synthesized analogously, starting from tetramethoxygermane and using three molar equivalents of oxalic acid and two molar equivalents of 1‐(2‐hydroxyethyl)piperidine or triethylamine. Compounds 4 — 7 were characterized by elemental analyses (C, H, N), single‐crystal X‐ray diffraction, solid‐state VACP/MAS NMR spectroscopy (29Si), and solution NMR spectroscopy (1H, 13C, 29Si). The structural characterization was complemented by computational studies of the tris[oxalato(2—)]silicate dianion and the tris[oxalato(2—)]germanate dianion. In addition, the stability of compounds 4 — 7 in aqueous solution was studied by 13C NMR spectroscopy.  相似文献   

3.
Morpholinium meso‐bis[citrato(3‐)‐O1, O3, O6]silicate (meso‐ 5 ) and racemic morpholinium bis[citrato(4‐)‐O1, O3, O6]silicate (rac‐ 6 ) were synthesized by treatment of tetramethoxysilane with citric acid and morpholine (molar ratio 1:2:2 and 1:2:4, respectively). Treatment of tetramethoxysilane with (S)‐malic acid and tri(n‐propyl)amine or tri(n‐butyl)amine (molar ratio 1:3:2) yielded tri(n‐propyl)ammonium (Λ, S, S, S)‐mer‐tris[malato(2‐)‐O1, O2]silicate ((Λ, S, S, S)‐mer‐ 7 ) and tri(n‐butyl)ammonium (Λ, S, S, S)‐mer‐tris[malato(2‐)‐O1, O2]silicate ((Λ, S, S, S)‐mer‐ 8 ). The hexacoordinate silicon compounds meso‐ 5 ·2MeOH, rac‐ 6 ·1.73MeOH, (Λ, S, S, S)‐mer‐ 7 , and (Λ, S, S, S)‐mer‐ 8 ·2MeCN were structurally characterized in the solid state by single‐crystal X‐ray diffraction and VACP/MAS NMR spectroscopy (13C, 15N, 29Si). Upon dissolution in water at 20 °C, spontaneous hydrolysis of the λ6Si‐silicate anions was observed.  相似文献   

4.
Surrounded by six : A series of novel neutral hexacoordinate silicon(IV ) complexes with SiO2N4 skeletons, containing two bidentate monoanionic O,N ligands and two monoanionic NCX (X = O, S) ligands, was synthesized. The formation of the title compounds involved some unexpected transformations of the bidentate O,N ligands.

  相似文献   


5.
The molecular structures of blue dichloro‐tetrakis(acrylamide) cobalt(II), [Co{O‐OC(NH2)CH=CH2}4Cl2] ( 1 ) and pink hexakis(acrylamide)cobalt(II) tetrachlorocobaltate(II), [Co{O‐OC‐(NH2)CH=CH2}6][CoCl4] ( 2 ), characterized by single X‐ray diffraction, IR spectroscopy and elemental analyses, are described. The coordination of CoII in 1 involves a tetragonally distorted octahedral structure with four O‐donor atoms of acrylamide in the equatorial positions and two chloride ions in the apical positions. The second complex 2 in ionic form contains CoII cations surrounded by an octahedral array of O‐coordinated acrylamide ligands, accompanied by a [CoCl4]2? anion.  相似文献   

6.
The neutral pentacoordinate silicon(IV) complex 10 (SiON3C skeleton) and the neutral hexacoordinate silicon(IV) complex 11 (SiON4C skeleton) were synthesized, starting from methyldi(thiocyanato‐N)silane ( 7 ). In addition to their monodentate thiocyanato‐N and methyl ligands, these compounds contain a tridentate dianionic O,N,N ligand ( 10 ) or a tridentate monoanionic O,N,N ligand ( 11 ). Compounds 10 and 11 were characterized by single‐crystal X‐ray diffraction and solid‐state and solution NMR spectroscopy. According to these studies, compounds 10 and 11 exist in solution as well.  相似文献   

7.
New dinuclear pentacoordinate molybdenum(V) complexes, [Mo2VO3L2] [L = thiosemicarbazonato ligand: C6H4(O)CH:NN:C(S)NHR′ and C10H6(O)CH:NN:C(S)NHR′; R′ = H, CH3, C6H5) were obtained either by oxygen atom abstraction from MoVIO2L with triphenylphosphine or by using [Mo2O3(acac)4] in the reaction with the corresponding ligands H2L. Crystal and molecular structure of [Mo2O3{C6H4(O)CH:NN:C(S)NHC6H5}2] · CH3CN has been determined by the single‐crystal X‐ray diffraction method.  相似文献   

8.
The 1,6,7,12,13,18‐hexaazatrinaphthylene (HATN) complex [(Et2Zn)33‐HATN)] was synthesized and characterized by IR spectroscopy, UV/Vis spectroscopy, elemental analysis and ESI‐MS spectrometry. Attempts to prepare ZnCl2 complexes of HATN leads only to the mononuclear [(Cl2Zn)(HATN)] derivative, characterized by X‐ray diffraction, IR‐ and UV/Vis‐spectroscopy as well as ESI‐MS spectrometry. The bright red 2,2′‐bipyridine (bipy) complex [(Et2Zn)(bipy)] ( 1 ) was synthesized and characterized by X‐ray diffraction and NMR spectroscopy. The UV/Vis‐spectra of the HATN‐complexes show absorptions in regions of far longer wavelengths than the corresponding 2,2′‐bipyridine or 1,10‐phenantroline complexes. Consequently the π*‐LUMO of HATN ( 5 ) is lower in energy than the π*‐LUMO of 2,2′‐bipyridine ( 2 ) or 1,10‐phenanthroline (phen).  相似文献   

9.
The neutral hexacoordinate silicon(IV) complex 6 (SiO2N4 skeleton) and the neutral pentacoordinate silicon(IV) complexes 7 – 11 (SiO2N2C skeletons) were synthesized from Si(NCO)4 and RSi(NCO)3 (R=Me, Ph), respectively. The compounds were structurally characterized by solid‐state NMR spectroscopy ( 6 – 11 ), solution NMR spectroscopy ( 6 and 10 ), and single‐crystal X‐ray diffraction ( 8 and 11 were studied as the solvates 8? CH3CN and 11? C5H12 ? 0.5 CH3CN, respectively). The silicon(IV) complexes 6 (octahedral Si‐coordination polyhedron) and 7 – 11 (trigonal‐bipyramidal Si‐coordination polyhedra) each contain two bidentate ligands derived from an α‐amino acid: (S)‐alanine, (S)‐phenylalanine, or (S)‐tert‐leucine. The deprotonated amino acids act as monoanionic ( 6 ) or as mono‐ and dianionic ligands ( 7 – 11 ). The experimental investigations were complemented by computational studies of the stereoisomers of 6 and 7 .  相似文献   

10.
[BrMn(CO)5] reacts with benzoylhydrazine in THF occurring substitution of two CO groups by a Metal‐ligand ring to give fac‐[Mn(Br)(CO)3(BHD)]·2THF (BHD = C6H5CONHNH2). The novel compound shows a distorted octahedral arrangement at the manganese atom, with three nearly linear carbonyl ligands in a fac arrangement, illustrating another example that the CO group in position trans to the bromine ligand in [BrMn(CO)5] presents the most intensive metal‐CO backbonding effect of all the CO groups of the parent complex, leading to the formation of a facial (and not meridional) isomer, even in the presence of a bidentate ligand like benzydrazide. X‐ray measures of yellow crystals showed that the title complex belong to space group P21/c, with the asymmetric unit containing one crystallographically independent [Mn(Br)(CO)3(BHD)] complex and two tetrahydrofurane solvate molecules. The new compound represents heretofore the unique occurrence of the complexing single bidentate ligand ‐O=C(Ph)‐N(H)‐N(H)2‐ with an octahedral coordination at the MnI atom supported chiefly by carbonyl groups.  相似文献   

11.

The interaction of Bu2Sn(OPri)2 with a trifunctional tetradentate Schiff base (LH3) (where H3L = HOC6H4CH═NCH3C(CH2OH)2) yields the precursor complex Bu2Sn(LH) 1, which, on equimolar reactions with different metal alkoxides [Al(OPri)3, Bu3Sn(OPri), Ge(OEt)4]; Al(Medea)(OPri) (where Medea = CH3N- (CH2CH2O)2); and Me3SiCl in the presence of Et3N], affords, respectively, the complexes Bu2Sn(L)Al(OPri)2 2, Bu2Sn(L)Al(Medea) 3, Bu2Sn(L)Bu3Sn 4, Bu2Sn(L)Ge(OEt)3 5, and Bu2Sn(L)SiMe3 6. The reactions of 2 with 2,5-dimethyl-2,5-hexanediol in a 1:1 ratio and with acetylacetone (acacH) in a 1:2 molar ratio afforded derivatives Bu2Sn(L)Al(OC(CH3)2CH2CH2C(CH3)2 O) 7 and Bu2Sn(L)Al(acac)2 8, respectively. All of the derivatives 18 have been characterized by elemental analyses, molecular weight measurements, and spectroscopic [IR and NMR (1H, 119Sn, 29Si, and 27Al)] studies.  相似文献   

12.
The preparation and structures of 2, 2′‐dihydroxyazobenzenato‐dibutyl‐tin [Bu2SnL] and 2, 2′‐dihydroxyazobenzenato‐dimethyl‐tin [Me2SnL] are described. The complexes were characterized by IR, NMR (1H, 13C, 119Sn) and UV/VIS spectra. The crystal structures were determined by X‐ray diffraction on single crystals. [Bu2SnL]: monoclinic, space group P21/c, cell constants at 208 K: a = 860.73(5), b = 973, 51(18), c = 2340.0(3) pm, β = 93.615(11)°; R1 = 0.0546. [Me2SnL]: orthorhombic, space group Pbcn, cell constants at 208 K: a = 1914.6(4), b = 1041.3(3), c = 1323.27(14) pm; R1 = 0.0529.  相似文献   

13.
A series of [(4‐n‐alkyl‐1,4‐bisazoniacyclohex‐1‐yl)methyl]pentafluorosilicates (alkyl = hexyl, heptyl, octyl, nonyl, decyl; compounds 14 – 18 ) were synthesized and studied for their surface activity. The zwitterionic pentafluorosilicates with hexacoordinate Si atoms 14 – 18 were prepared by reaction of the respective [(4‐n‐alkylpiperazin‐1‐yl)methyl]trimethoxysilanes [obtained by treatment of (MeO)3SiCH2Cl with the respective n‐alkylpiperazine in the presence of NEt3] with HF in water/ethanol. Surface tension measurements with solutions of 14 – 18 in 0.01 M hydrochloric acid proved that these compounds are surfactants, the increase of the n‐alkyl chain length resulting in an increase of surface activity ( 14 → 18 ). The equilibrium surface tension vs concentration isotherms for 14 – 17 (solutions of “surface‐chemically pure” samples in 0.01 M hydrochloric acid) were analyzed quantitatively.  相似文献   

14.
New complexes:Zn(Hsalox)(ox), Zn(Hsalox)(NHPh), Zn(Hsalox)(Hsal) and Zn(Hsalox)2(1,2-diMeim) have been synthesised as a result of a reaction of Zn(salox) and Zn(Hsalox)2 (where: salox 2–=OC6H4CHNO2–, Hsalox =OC6H4CHNOH) with 8-hydroxyquinoline (Hox), o-aminophenol (NH2Ph), o-hydroxybenzoic acid (H2Sal) and 1,2-dimethylimidazole (1,2-diMeim). Chemical, X-ray and thermal analyses of the complexes and their sinters have been carried out. Thermal decomposition pathways have been postulated for the complexes. The mixtures about not definite composition have been obtained as a result of a reaction of zinc(o-hydroxybenzaldoximates) with imidazole(Him) and 4-methylimidazole (4-MeHim). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Various new C2‐symmetric bidentate ligands, bearing phosphorus, nitrogen, and sulfur, were obtained in an efficient manner, starting from (±)‐trans‐3‐methylidenecyclopropane‐1,2‐dicarboxylic acid (Feist's acid; (±)‐trans‐ 3 ). The structures of the new bidentate ligands, di(tert‐butyl) (±)‐[(trans‐3‐methylidenecyclopropane‐1,2‐diyl)dimethanediyl]biscarbamate ((±)‐ 9 ), (±)‐(trans‐3‐methyldienecyclopropane‐1,2‐diyl)dimethanaminium dichloride ((±)‐ 10 ), (±)‐S,S′‐[(trans‐3‐methylidenecyclopropane‐1,2‐diyl)dimethanediyl] diethanethioate ((±)‐ 11 ), and (±)‐[(trans‐3‐methylidenecyclopropane‐1,2‐diyl)dimethanediyl]bis(diphenylphosphane) ((±)‐ 12 ), were fully characterized by standard spectroscopic techniques. These new classes of C2‐symmetric bidentate ligands have the potential to be used in asymmetric catalysis.  相似文献   

16.
The platina‐β‐diketones [Pt2{(COR)2H}2(μ‐Cl)2] ( 1 , R = Me a , Et b ) react with phosphines L in a molar ratio of 1 : 4 through cleavage of acetaldehyde to give acylplatinum(II) complexes trans‐[Pt(COR)Cl(L)2] ( 2 ) (R/L = Me/P(p‐FC6H4)3 a , Me/P(p‐CH2=CHC6H4)Ph2 b , Me/P(n‐Bu)3 c , Et/P(p‐MeOC6H4)3 d ). 1 a reacts with Ph2As(CH2)2PPh2 (dadpe) in a molar ratio of 1 : 2 through cleavage of acetaldehyde yielding [Pt(COMe)Cl(dadpe)] ( 3 a ) (configuration index: SP‐4‐4) and [Pt(COMe)Cl(dadpe)] (configuration index: SP‐4‐2) ( 3 b ) in a ratio of about 9 : 1. All acyl complexes were characterized by 1H, 13C and 31P NMR spectroscopy. The molecular structures of 2 a and 3 a were determined by single‐crystal X‐ray diffraction. The geometries at the platinum centers are close to square planar. In both complexes the plane of the acyl ligand is nearly perpendicular to the plane of the complex (88(2)° 2 a , 81.2(5)° 3 a ).  相似文献   

17.
Reaction of 1‐phenyl‐4‐phenylacetyl‐2‐thiosemicarbazide (H2L) with diphenyllead(IV) dichloride and acetate afforded the complexes [PbPh2Cl2(H2L)2] and [PbPh2L]. The ligand and the complexes were characterized by elemental analyses, 1H and 13C NMR spectroscopy and X‐ray crystallography. In the asymmetric unit of crystals of the ligand there are four independent molecules of H2L and four molecules of water, which associate in the lattice as two independent sheets. The complex [PbPh2Cl2(H2L)2]·4MeOH has slightly distorted all‐trans octahedral geometry around the lead atom, and the fact that the ligand is S‐bound rather than O‐bound suggests that PbPh2Cl2 behaves as a “soft” Lewis acid. Hydrogen bonds involving NH groups, Cl atoms and MeOH molecules form a three‐dimensional supramolecular structure. In [PbPh2L]·Me2CO, the L2? anion bridges between two metal centres, binding to one strongly via the N and S atoms and weakly via the O atom, and to the other via the O atom, thus creating polymeric chains along the b axis. The double deprotonation and metallation of H2L induce significant changes in its configuration and lengthen the C‐S and C‐O bonds, suggesting an evolution of the dianion towards a thiol‐enol form.  相似文献   

18.
Complexes [NiI3(mpta)2]I ( 1 ) and [NiI3(ppta)2]I ( 2 ) have been synthesized by reaction of nickel(II) halide salts with ‐1‐methyl‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane iodide (mpta+I?) and 1‐(n‐propyl)‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane bromide (ppta+Br?) respectively. The crystal structures of compounds 1 and 2 are described and are similar, with both compounds crystallizing in monoclinic space groups. The geometry about both nickel atoms is that of a trigonal bipyramid with the cationic phosphine ligands found in the axial positions and the iodide ligands arranged in the equatorial plane.  相似文献   

19.
Four new complexes of [Cu(bpm)(ox)(H2O)] ( 1 ), [Cu(tpd)(dca)(H2O)] ( 2 ), [Cu(bppz)(N3)2] ( 3 ), and [Cu(bpm)21,3‐N3)(N3)] ( 4 ) (bpm = 2,2′‐bipyrimidine, bppz = 2,3‐bis(2‐pyridyl)pyrazine, tpd = 4‐terpyridone, dca = dicyanamide, ox = oxalate) have been prepared and characterized by X‐ray single‐crystal analysis and variable‐temperature magnetic measurements. Compounds 1–4 are essentially mononuclear Cu(II) complexes. However, in complex 1 , Cu(II) it was found that intermolecular hydrogen bonding through between H2O and ox formed 1‐D chain structure. In complex 2 it was found that the hydrogen bonding between H2O and tpd of the next molecule led to for a binuclear Cu(II) complex. In complex 3 , two nitrogen atoms, one of the pyridyl group of bppz and one of N3? ligands, are weakly coordinated to neighbor Cu(II) ion thus leading to formation of a 1‐D chain structure. In complex 4 , one nitrogen atom of terminated N3? is weakly coordinated to the neighbor Cu(II) site to form a 1‐D polymeric structure. The magnetic susceptibility measurements indicate that complex 1 and 4 exhibit a weak antiferromagnetic interaction whereas a ferromagnetic coupling has been established for complexes 2 and 3 .  相似文献   

20.
Four new bridged silver(I) complexes, namely [Ag22‐teda)(μ2‐fbc)2] ( 1 ), [Ag22‐1,6‐dah)2](bpdc) · 4H2O ( 2 ), [Ag22‐2‐ap)(2‐ap)(bnb)] · 0.34H2O ( 3 ), [Ag22‐pyc)2(2‐apy)2] · 0.5H2O ( 4 ), have been synthesized and characterized by elemental analysis and crystallographic methods [fbc = 4‐fluorobenzoate, teda = triethylenediamine ( 1 ); bpdc = biphenyl‐4,4′‐dicarboxylate, 1,6‐dah = 1,6‐diaminohexane ( 2 ); bnb = 3,5‐binitrobenzoate, 2‐ap = 2‐aminopyrimidine ( 3 ); pyc = 3‐pyridinecarboxylate acid, 2‐apy = 2‐aminopyridine ( 4 )]. Complex 1 contains a 1D linear chain paralleling to the c‐axis, whereas in complex 2 silver(I) atoms were bridged by the 1,6‐dah ligand into a zigzag chain, further giving a 1D ribbon by weak Ag ··· Ag interactions. Complex 3 consists of a dinuclear silver(I) [Ag22‐2‐ap)(2‐ap)(bnb)] moiety and a lattice water molecule, forming a 3D network via a number of hydrogen‐bonding interactions such as N–H ··· O, N–H ··· N and C–H ··· O hydrogen bond and other weak interactions such Ag ··· Ag, Ag ··· N, N ··· O as well as O ··· O interaction. Similar to 3 , the asymmetric unit of 4 consists of one dinuclear silver(I) [Ag22‐pyc)2(2‐apy)2] moiety and half lattice water molecule, further generating a tetranuclear silver(I) {[Ag22‐pyc)2(2‐apy)2]2 · H2O} moiety. These moieties construct a 3D supramolecular network structure of 4 through N–H ··· O, O–H ··· O and C–H ··· O hydrogen bonds as well as other weak interactions such as Ag ··· O and N ··· O interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号