共查询到20条相似文献,搜索用时 15 毫秒
1.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XVIII. Syntheses and Structures of [{η2‐tBu2P–P=P–PtBu2}Pt(PR3)2] tBu2P–P=P(Me)tBu2 reacts with [{η2‐C2H4} · Pt(PR3)2] as well as with [{η2‐tBu2P–P}Pt(PR3)2] yielding [{η2‐tBu2P–P=P–PtBu2}Pt(PR3)2]; PR3 = PMe3 3 a , PEtPh2 3 b , 1/2 dppe 3 c , PPh3 3 d , P(p‐Tol)3 3 e . All compounds are characterized by 1H and 31P NMR spectra, for 3 b and 3 d also crystal structure determinations were performed. 3 b crystallizes in the triclinic space group P1 (No. 2) with a = 1212.58(7), b = 1430.74(8), c = 1629.34(11) pm, α = 77.321(6), β = 70.469(5), γ = 87.312(6)°. 3 d crystallizes in the triclinic space group P1 (No. 2) with a = 1122.60(9), b = 1355.88(11), c = 2025.11(14) pm, α = 83.824(9), β = 82.498(9), γ = 67.214(8)°. 相似文献
2.
Harald Krautscheid Eberhard Matern Jolanta Olkowska‐Oetzel Jerzy Pikies Gerhard Fritz 《无机化学与普通化学杂志》2001,627(5):999-1002
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXV. Formation and Structure of [{ cyclo ‐P3(PtBu2)3}{Ni(CO)2}{Ni(CO)3}] tBu2P–P=P(R)tBu2 (R = Br, Me) reacts with [Ni(CO)4] yielding [{cyclo‐P3(PtBu2)3}{Ni(CO)2}{Ni(CO)3}]. The two cis‐tBu2P substituents of the cyclotriphosphane, which results from the trimerization of the phosphinophosphinidene tBu2P–P, are coordinating to a Ni(CO)2 unit forming a five‐membered P4Ni chelate ring. The trans‐tBu2P group is linked to a Ni(CO)3 unit. The compound crystallizes in the orthorhombic space group Pbca (No. 61) with a = 933.30(5), b = 2353.2(1) and c = 3474.7(3) pm. 相似文献
3.
Helmut Goesmann Eberhard Matern Jolanta Olkowska‐Oetzel Jerzy Pikies Gerhard Fritz 《无机化学与普通化学杂志》2001,627(6):1181-1184
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXIII. Reactions of tBu2P–P=P(Me)tBu2 with (Et3P)2NiCl2 and [{η2‐C2H4}Ni(PEt3)2] tBu2P–P=P(Me)tBu2 ( 1 ) forms with (Et3P)2NiCl2 ( 2 ) and Na(Nph) the [μ‐(1,3 : 2,3‐η‐tBu2P4tBu2){Ni(PEt3)Cl}2] ( 3 ) as main product. Using Na/Hg instead as reducing agent the Ni0 compounds [{η2‐tBu2P–P}Ni(PEt3)2] ( 4 ), [{η2‐tBu2P–P=P–PtBu2}Ni(PEt3)2] ( 5 ) and [(Et3P)Ni(μ‐PtBu2)]2 ( 6 ) with four‐membered Ni2P2 ring result. [{η2‐C2H4}Ni(PEt3)2] yields with 1 also 4 . The compounds were characterized by 1H and 31P{1H} NMR investigations and 3 also by a single crystal X‐ray analysis. It crystallizes triclinic in the space group P 1 with a = 1129.4(2), b = 1256.8(3), c = 1569.5(3) pm, α = 72.44(3)°, β = 70.52(3)° and γ = 74.20(3)°. 相似文献
4.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XIX. [Co4P2(PtBu2)2(CO)8] and [{Co(CO)3}2P4tBu4] from Co2(CO)8 and tBu2P–P=P(Me)tBu2 Co2(CO)8 reacts with tBu2P–P=P(Me)tBu2 yielding the compounds [Co4P2(PtBu2)2(CO)8] ( 1 ) and [{η2tBu2P=P–P=PtBu2}{Co(CO)3}2] ( 2 a ) cis, ( 2 b ) trans. In 1 , four Co and two P atoms form a tetragonal bipyramid, in which two adjacent Co atoms are μ2‐bridged by tBu2P groups. Additionally, two CO groups are linked to each Co atom. In 2 a and 2 b , each of the Co(CO)3 units is η2‐coordinated to the terminal P2 units resulting in the cis‐ and trans‐configurations 2 a and 2 b . 1 crystallizes in the orthorhombic space group Pnnm (No. 58) with a = 879,41(5), b = 1199,11(8), c = 1773,65(11) pm. 2 a crystallizes in the monoclinic space group P21/n (No. 14) with a = 875,97(5), b = 1625,36(11), c = 2117,86(12) pm, β = 91,714(7)°. 2 b crystallizes in the triclinic space group P 1 (No. 2) with a = 812,00(10), b = 843,40(10), c = 1179,3(2) pm, α = 100,92(2)°, β = 102,31(2)°, γ = 102,25(2)°. 相似文献
5.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes XXI The Influence of the PR3 Ligands on Formation and Properties of the Phosphinophosphinidene Complexes [{η2‐tBu2P–P}Pt(PR3)2] and [{η2‐tBu2P1–P2}Pt(P3R3)(P4R′3)] (R3P)2PtCl2 and C2H4 yield the compounds [{η2‐C2H4}Pt(PR3)2] (PR3 = PMe3, PEt3, PPhEt2, PPh2Et, PPh2Me, PPh2iPr, PPh2tBu and P(p‐Tol)3); which react with tBu2P–P=PMetBu2 to give the phosphinophosphinidene complexes [{η2‐tBu2P–P}Pt(PMe3)2], [{η2‐tBu2P–P}Pt(PEt3)2], [{η2‐tBu2P–P}Pt(PPhEt2)2], [{η2‐tBu2P–P}Pt(PPh2Et)2], [{η2‐tBu2P–P}Pt(PPh2Me)2], [{η2‐tBu2P–P}Pt(PPh2iPr], [{η2‐tBu2P–P}Pt(PPh2tBu)2] and [{η2‐tBu2P–P}Pt(P(p‐Tol)3)2]. [{η2‐tBu2P–P}Pt(PPh3)2] reacts with PMe3 and PEt3 as well as with tBu2PMe, PiPr3 and P(c‐Hex)3 by substituting one PPh3 ligand to give [{η2‐tBu2P1–P2}Pt(P3Me3)(P4Ph3)], [{η2‐tBu2P1–P2}Pt(P3Ph3)(P4Me3)], [{η2‐tBu2P1–P2}Pt(P3Et3)(P4Ph3)], [{η2‐tBu2P1–P2}Pt(P3MetBu2)(P4Ph3)], [{η2‐tBu2P1–P2}Pt(P3iPr3)(P4Ph3)] and [{η2‐tBu2P1–P2}Pt(P3(c‐Hex)3)(P4Ph3)]. With tBu2PMe, [{η2‐tBu2P–P}Pt(P(p‐Tol)3)2] forms [{η2‐tBu2P1–P2}Pt(P3MetBu2)(P4(p‐Tol)3)]. The NMR data of the compounds are given and discussed with respect to the influence of the PR3 ligands. 相似文献
6.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XX Formation and Structure of [{η2‐tBu2P–P}Pt(PHtBu2)(PPh3)] [{η2‐tBu2P1–P2}Pt(P3Ph3)(P4Ph3)] ( 2 ) reacts with tBu2PH exchanging only the P3Ph3 group to give [{η2‐tBu2P1–P2}Pt(P3HtBu2)(P4Ph3)] ( 1 ). The crystal stucture determination of 1 together with its 31P{1H} NMR data allow for an unequivocal assignment of the coupling constants in related Pt complexes. 1 crystallizes in the triclinic space group P1 (no. 2) with a = 1030.33(15), b = 1244.46(19), c = 1604.1(3) pm, α = 86.565(17)°, β = 80.344(18)°, γ = 74.729(17)°. 相似文献
7.
Ingo Krossing Ulli Englert Eberhard Matern Jolanta Olkowska‐Oetzel Jerzy Pikies Gerhard Fritz 《无机化学与普通化学杂志》2002,628(2):446-452
tBu2P‐P=P(Me)tBu2 reacts with [Fe2(CO)9] to give [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)3}{Fe(CO)4}] ( 1 ) and [trans‐(tBu2MeP)2Fe(CO)3]( 2 ). With [(η2‐C8H14)2Fe(CO)3] in addition to [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)2PMetBu2}‐{Fe(CO)4}] ( 10 ) and 2 also [(μ‐PtBu2){μ‐P‐Fe(CO)3‐PMetBu2}‐{Fe(CO)3}2(Fe‐Fe)]( 9 ) is formed. 1 crystallizes in the monoclinic space group P21/c with a = 875.0(2), b = 1073.2(2), c = 3162.6(6) pm and β = 94.64(3)?. 2 crystallizes in the monoclinic space group P21/c with a = 1643.4(7), b = 1240.29(6), c = 2667.0(5) pm and β = 97.42(2)?. 9 crystallizes in the monoclinic space group P21/n with a = 1407.5(5), b = 1649.7(5), c = 1557.9(16) pm and β = 112.87(2)?. 相似文献
8.
Synthesis, Crystal Structures, and Vibrational Spectra of [Pt(N3)6]2– and [Pt(N3)Cl5]2–, 195Pt and 15N NMR Spectra of [Pt(N3)nCl6–n]2– and [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 By ligand exchange of [PtCl6]2– with sodium azide mixed complexes of the series [Pt(N3)nCl6–n]2– and with 15N‐labelled sodium azide (Na15NN2) mixtures of the isotopomeres [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 and the pair [Pt(15NN2)Cl5]2–/[Pt(N215N)Cl5]2– are formed. X‐ray structure determinations on single crystals of (Ph4P)2[Pt(N3)6] ( 1 ) (triclinic, space group P1, a = 10.175(1), b = 10.516(1), c = 12.380(2) Å, α = 87.822(9), β = 73.822(9), γ = 67.987(8)°, Z = 1) and (Ph4As)2[Pt(N3)Cl5] · HCON(CH3)2 ( 2 ) (triclinic, space group P1, a = 10.068(2), b = 11.001(2), c = 23.658(5) Å, α = 101.196(14), β = 93.977(15), γ = 101.484(13)°, Z = 2) have been performed. The bond lengths are Pt–N = 2.088 ( 1 ), 2.105 ( 2 ) and Pt–Cl = 2.318 Å ( 2 ). The approximate linear azido ligands with Nα–Nβ–Nγ‐angles = 173.5–174.6° are bonded with Pt–Nα–Nβ‐angles = 116.4–121.0°. In the vibrational spectra the PtCl stretching vibrations of (n‐Bu4N)2[Pt(N3)Cl5] are observed at 318–345, the PtN stretching modes of (n‐Bu4N)2[Pt(N3)6] at 401–428 and of (n‐Bu4N)2[Pt(N3)Cl5] at 408–413 cm–1. The mixtures (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 and (n‐Bu4N)2[Pt(15NN2)Cl5]/(n‐Bu4N)2[Pt(N215N)Cl5] exhibit 15N‐isotopic shifts up to 20 cm–1. Based on the molecular parameters of the X‐ray determinations the vibrational spectra are assigned by normal coordinate analysis. The average valence force constants are fd(PtCl) = 1.93, fd(PtNα) = 2.38 and fd(NαNβ, NβNγ) = 12.39 mdyn/Å. In the 195Pt NMR spectrum of [Pt(N3)nCl6–n]2–, n = 0–6 downfield shifts with the increasing number of azido ligands are observed in the range 4766–5067 ppm. The 15N NMR spectrum of (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 exhibits by 15N–195Pt coupling a pseudotriplett at –307.5 ppm. Due to the isotopomeres n = 0–5 for terminal 15N six well‐resolved signals with distances of 0.03 ppm are observed in the low field region at –201 to –199 ppm. 相似文献
9.
Harald Krautscheid Eberhard Matern Jolanta Olkowska‐Oetzel Jerzy Pikies Gerhard Fritz 《无机化学与普通化学杂志》2001,627(7):1505-1507
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXIV. Formation and Structure of [μ‐(1,2 : 2‐η‐tBu2P–P){Mo(CO)2cp′}2] [cp′Mo(CO)2]2 (cp′ = C5H4tBu) reacts with tBu2P–P=P(Me)tBu2 to yield the compound [μ‐(1,2 : 2‐η‐tBu2P–P){Mo(CO)2cp′}2], which crystallizes in the space group P212121 with a = 1202.42(7), b = 1552.48(8), and c = 1765.3(1) pm. 相似文献
10.
Babett Krauss Clemens Mügge Adolf Zschunke Friedrich Krech Michaela Flock 《无机化学与普通化学杂志》2002,628(3):580-588
1‐Phosphabicyclo[2.2.1]heptanes Exo‐endo‐ and exo‐exo‐2.6‐dimethyl‐1‐phosphabicyclo [2.2.1]heptane have been obtained by cyclization of 2‐methyl‐4‐(2‐propenyl)phospholane in the presence of the complex base, sodium salt of diethylenglycolmonoethylether ‐ sodium amide in THF (NAMEDEG). The bicyclic phosphanes are characterized by reac‐tions with selenium, sulfur, (CH3)2SeO, CH3I and HSO3F, respectively, elemental analysis, X‐ray crystal structure analysis as well as 1H, 13C, 31P NMR spectral measurements. The steric demand of these phosphanes as complex ligands has been estimated from the P, H coupling constants of the phosphonium fluorosulphates according to the Tolman model. The phosphane selenides were found to display the lowest values for the 1J(Se, P) coupling constant, found up to now for alicyclic and cyclic aliphatic tertiary phosphane selenides. The nJ(P, H)‐ and nJ(H, H)n=2, 3 coupling constants have been extracted from the proton spectra at 600 MHz by computerized analysis. 相似文献
11.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of cis‐(n‐Bu4N)2[Pt(ECN)2(ox)2], E = S, Se By exposure of trans‐(n‐Bu4N)2[Pt(ECN)2(ox)2], E = S and Se, in dichloromethane cis‐(n‐Bu4N)2[Pt(SCN)2(ox)2] ( 1 ) and cis‐(n‐Bu4N)2[Pt(SeCN)2(ox)2] ( 2 ) are formed. The crystal structure of 1 (triclinic, space group P1¯, a = 10.789(1), b = 11.906(1), c = 18.580(1)Å, α = 85.619(10), β = 85.272(10), γ = 75.173(10)°, Z = 2) reveals, that the compound crystallizes as a racemic mixture with C2 point symmetrical complex anions. The bond lengths in both S′‐Pt‐O˙ axes are Pt‐S′ = 2.321 and Pt‐O˙ = 2.048 and in the O‐Pt‐O axis Pt‐O = 2.007Å. The oxalato ligands are nearly plane with O‐C‐C‐O torsion angles of 1.4 — 3.9°. The via S′ bound linear thiocyanate groups are coordinated with Pt‐S′‐C angles of 102.6°. In the vibrational spectra the PtE′ stretching vibrations are observed at 327 — 330 ( 1 ) and 217 — 231 cm—1 ( 2 ). The PtO˙ and PtO stretching vibrations are coupled with internal vibrations of the oxalato ligands and appear in the range of 400 — 800 cm—1. Based on the molecular parameters of the X‐ray determination ( 1 ) and estimated data ( 2 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS′) = 2.08, fd(PtSe′) = 1.78, fd(PtO˙) = 2.45 ( 1 ) and 2.27 ( 2 ) and fd(PtO) = 2.65 ( 1 ) and 2.60 mdyn/Å ( 2 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 4925.9 ( 1 ), 4783.0 ( 2 ) and δ(77Se) = 161.7 ppm with the coupling constant 1J(SePt) = 366.2 Hz. 相似文献
12.
Coordination Chemistry of P-rich Phosphanes and Silylphasphanes. XIV. The Phosphinophosphinidene tBu2P? P as a Ligand in the Pt Complexes [η2-{tBu2P? P}Pt(PPh3)2] and [η2-{tBu2P? P}Pt(PEtPh2)2] [η2-{tBu2P? P}Pt(PPh3)2 1 and [η2-{tBu2P? P}Pt(PEtPh2)2] 2 are the first complex compounds of tBu2P? P 5 . They are formed in the reaction of tBu2P? P ? P(Me)tBu2 3 with [η2-{H2C ? CH2}Pt(PPh3)2] 6 or [η2-{H2C ? CH2}Pt(PEtPh2)2] 7 , respectively. Compound 1 is less stable than 2 and reacts on to [η2-{tBu2P? P} Pt(PPh3)(PtBu2Me)] 10 with the coincidently formed tBu2PMe. The molecular structures of 1 and 2 were derived from their 1H and 31P-NMR spectra, 2 was additionally characterized by a X ray structure determination. 2 crystallizes in the monoclinic space group P21/n with a = 1222.36(7) pm, b = 1770.7(1) pm, c = 1729.7(1) pm, β = 108.653(6)°. 相似文献
13.
Eberhard Matern Jolanta Olkowska‐Oetzel Jerzy Pikies Gerhard Fritz 《无机化学与普通化学杂志》2001,627(8):1767-1770
The Reactions of tBu2P–P=P(Me)tBu2 and (Me3Si)tBuP–P=P(Me)tBu2 with PR3 tBu2P–P=P(Me)tBu2 ( 1 ) reacts at 20 °C with PMe3, PEt3, P(c‐Hex)3, P(p‐Tol)3, PPh2Me, PPh2Et, PPhEt2, PPh2iPr, PPh3 and P(NEt2)3 yielding tBu2P–P=PR3 and tBu2PMe; however, PtBu3, PtBu2(SiMe3) and tBu2PCl don't. tBu2PH and 1 form tBu2P–PH–PtBu2 which yields tBu2P–P=PEt3 when treated with PEt3. Ph2PH, tBuPH2, PH3, Ph2PCl and EtOH don't substitute the tBu2PMe group in 1 , instead, the molecule is decomposed. With PEt3, (Me3Si)tBuP–P=P(Me)tBu2 forms (Me3Si)tBuP–P=PEt3. The compounds tBu2P–P=PR3 decompose at 20 °C to different degrees giving P‐rich consecutive products of the phosphinophosphinidene. 相似文献
14.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of trans ‐( n ‐Bu4N)4[Pt(ECN)2(ox)2], E = S, Se By reaction of (n‐Bu4N)2[Pt(ox)2] with (SCN)2 and (SeCN)2 in dichloromethane trans‐(n‐Bu4N)2[Pt(SCN)2(ox)2] ( 1 ) und trans‐(n‐Bu4N)2[Pt(SeCN)2(ox)2] ( 2 ) are formed. The crystal structures of 1 (triclinic, space group P1, a = 10.219(2), b = 11.329(2), c = 12.010(3) Å, α = 114.108(15), β = 104.797(20), γ = 102.232(20)°, Z = 1) and 2 (triclinic, space group P1, a = 10.288(1), b = 11.332(1), c = 12.048(1) Å, α = 114.391(9), β = 103.071(10), γ = 102.466(12)°, Z = 1) reveal, that the compounds crystallize isotypically with centrosymmetric complex anions. The bond lengths are Pt–S = 2.357, Pt–Se = 2.480 and Pt–O = 2.011 ( 1 ) und 2.006 Å ( 2 ). The oxalato ligands are nearly plane with O–C–C–O torsion angles of 1.7–3.6°. The via S or Se coordinated linear groups are inclined between both oxalato ligands with Pt–E–C angles of 100.4 (E = S) and 97.4° (Se). In the vibrational spectra the PtE stretching vibrations are observed at 299–314 ( 1 ) and 189–200 cm–1 ( 2 ). The PtO stretching vibrations are coupled with internal vibrations of the oxalato ligands and appear in the range of 400–800 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS) = 1.75, fd(PtSe) = 1.35 and fd(PtO) = 2.77 mdyn/Å. The NMR shifts are δ(195Pt) = 5435.2 ( 1 ), 5373.7 ( 2 ) and δ(77Se) = 353.2 ppm with the coupling constant 1J(SePt) = 37.4 Hz. 相似文献
15.
Darstellung und Kristallstruktur eines Ditelluridovanadium(IV)‐Komplexes: [(μ‐η1‐Te2)(μ‐NtBu)2V2Cp2]
Synthesis and Crystal Structure of a Ditelluridovanadium(IV) Complex: [(μ‐η1‐Te2)(μ‐NtBu)2V2Cp2] [(μ‐η1‐Te2)(μ‐NtBu)2V2Cp2] ( 2 ) is formed from [tBuN = VCp(PMe3)2] ( 1 ) upon reaction with elemental tellurium. 1 and 2 are characterized by spectroscopic methods (MS; 1H, 13C, 51V NMR), in addition 2 by single crystal X‐ray diffraction. The crystal structure indicates a folded cyclodivanadazen ring bridged by a bidentated ditellurido ligand, the first example of this structure type. 相似文献
16.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. IV. Formation and Structure of the Chromium Carbonyl Complexes of Tris(di-tert-butylphospha)heptaphosphanortricyclane (t-Bu2P)3P7 The reaction of (t-Bu2P)3P7 1 with Cr(CO)5 · THF in a molar ratio of 1:1 yields yellow crystals of (t-Bu2P)3P7[Cr(CO)5] 2 having the Cr(CO)5 group coordinated to a Pb atom (basal) of the three membered ring. With a molar ratio of 1:2 compounds 2 , (t-Bu2P)3P7[Cr(CO)5]2 3 , (t-Bu2P)3P7[Cr(CO)5][Cr(CO)4] 4 and (t-Bu2P)3P7[Cr(CO)4]2 5 were obtained. In 3 (yellow crystals) one Cr(CO)5 group is linked to a Pb atom, the other one to an exocyclic Pexo atom. On irradiation 3 loosing one CO group generates 4 (orange red crystals) with an unchanged Cr(CO)5 group linked to the Pb atom and a five membered chelate-like ring containing an apical Pa atom, two equatorial Pa atoms, one Pexo atom and the Cr atom of the carbonyl group. Compound 5 (orange red crystals) contains two such five membered rings. (t-Bu2P)3P7[Cr(CO)4]3 6 (red needles) is formed with Cr(CO)5 · THF in a molar ratio of 1 : 1. However, even with higher amounts of Cr(CO)5 · THF and after extended reaction times, only 6 is formed; no further Cr carbonyl group could be attached to the P skeleton. With Cr(CO)5 · NBD in a molar ratio of 1 : 1, (t-Bu2P)3P7[Cr(CO)4] 7 is produced from 1, and 5 with a molar ratio of 2 : 1. As in 4, the Cr(CO)4 group in 7 (orange crystals) participates in a five membered chelate-like ring. It was not possible to generate 6 from 5 with an excess of Cr(CO)4 · NBD and with extended reaction times. The molecular structures of the compounds were identified by investigating the 31P[1H] NMR spec-tra and considering especially the coordination shift, and by crystal structure determinations of 2 and 4. Compound 2 crystallizes in the space group PI (no.2) with a = 1566.2(4) pm, b = 2304.1(5) pm, c = 1563.3(4) pm,α = 95.57(3)°, β = 108.79(3)°, γ = 109.82(4)° and Z = 4 formula units in the elementary cell. Compound 4 crystallizes in the space group P 21 /n (no. 14) with a = 1416.6(5) pm, b = 2573.6(5) pm, c = 1352.9(4) pm,β = 99.17(5)° and Z = 4 formula units in the elementary cell. 相似文献
17.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of cis‐ and trans‐(n‐Bu4N)2[PtF2(ox)2] and (n‐Bu4N)2[PtF4(ox)] By treatment of trans‐(n‐Bu4N)2[PtCl2(ox)2] and (n‐Bu4N)2[PtCl4(ox)] with XeF2 in propylene carbonate cis‐ and trans‐(n‐Bu4N)2[PtF2(ox)2] ( 1 , 2 ) and (n‐Bu4N)2[PtF4(ox)] ( 3 ) are formed which have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The crystal structure of trans(n‐Bu4N)2[PtF2(ox)2] ( 2 ) (tetragonal, space group P42/n, a = 15.5489(9), b = 15.5489(9), c = 17.835(1)Å, Z = 4) und Cs2[PtF4(ox)] ( 3 ) (monoclinic, space group C2/m, a = 14.5261(7), b = 6.2719(4), c = 9.6966(9)Å, β = 90.216(8)°, Z = 4) reveal complex anions with nearly D2h and C2v point symmetry. The average bond lengths in the symmetrical coordinated axes are Pt—F = 1.93 ( 2 , 3 ) and Pt—O = 1.987 ( 2 ) and in the F•—Pt—O′‐axes Pt—F• = 1.957 and Pt—O′ = 1.977Å ( 3 ). The oxalato ligands are nearly planar with a maximum displacement of the ring atoms of 0.05 ( 2 ) und 0.01Å ( 3 ) to the calculated best planes. In the vibrational spectra the symmetric and antisymmetric PtF stretching vibrations are observed at 583 and 586 ( 2 ) and 576 and 568 cm—1 ( 3 ). The PtF• modes appear at 565 and 562 ( 1 ) and 560 cm—1 ( 3 ). The PtO and PtO′ stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 400—800 cm—1. Based on the molecular parameters of the X‐ray determinations ( 2 , 3 ) and estimated data ( 1 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtF) = 3.55 ( 2 ) and 3.38 ( 3 ), fd(PtF•) = 3.23 ( 1 ) and 3.20 ( 3 ), fd(PtO) = 2.65 ( 1 ) and 2.84 ( 2 ) and fd(PtO′) = 2.97 ( 1 ) and 3.00 mdyn/Å ( 3 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 8485 ( 1 ), 8597 ( 2 ) and 10048 ppm ( 3 ), δ(19F) = —350 ( 2 ) and —352 ( 3 ) and δ(19F•) = —323 ( 1 ) and —326 ppm ( 3 ) with the coupling constants 1J(PtF) = 1784 ( 2 ) and 1864 ( 3 ) and 1J(PtF•) = 1525 ( 1 ) and 1638 Hz ( 3 ). 相似文献
18.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XVII [1] [Co(g5‐Me5C5)(g3‐tBu2PPCH–CH3)] from [Co(g5‐Me5C5)(g2‐C2H4)2] and tBu2P–P=P(Me)tBu2 [Co(η5‐Me5C5)(η3‐tBu2PPCH–CH3)] 1 is formed in the reaction of [Co(η5‐Me5C5)(η2‐C2H4)2] 2 with tBu2P–P 4 (generated from tBu2P–P=P(Me)tBu2 3 ) by elimination of one C2H4 ligand and coupling of the phosphinophosphinidene with the second one. The structure of 1 is proven by 31P, 13C, 1H NMR spectra and the X‐ray structure analysis. Within the ligand tBu2P1P2C1H–CH3 in 1 , the angle P1–P2–C1 amounts to 90°. The Co, P1, P2, C1 atoms in 1 look like a „butterfly”︁. The reaction of 2 with a mixture of tBu2P–P=P(Me)tBu2 3 and tBu–C?P 5 yields [Co(η5‐Me5C5){η4‐(tBuCP)2}] 6 and 1 . While 6 is spontaneously formed, 1 appears only after complete consumption of 5 . 相似文献
19.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of cis‐(n‐Bu4N)2[PtX2(ox)2], X = Cl, Br, I By treatment of [PtCl6]2— with C2O42— (ox2—) in water cis‐(n‐Bu4N)2[PtCl2(ox)2] ( 1 ) is formed which has been isolated by ion exchange chromatography on diethylaminoethyl cellulose. Exposure of trans‐(n‐Bu4N)2[PtX2(ox)2], X = Br and I, in dichloromethane yields cis‐(n‐Bu4N)2[PtBr2(ox)2] ( 2 ) and cis‐(n‐Bu4N)2[PtI2(ox)2] ( 3 ). The crystal structure of 3 (monoclinic, space group P21/c, a = 19.132(1), b = 14.377(1), c = 18.099(1) Å, ß = 113.734(8)°, Z = 4) reveals, that the compound crystallizes as a racemic mixture with C2 point symmetrical complex anions. The bond lengths in both I′‐Pt‐O• axes are Pt‐I′ = 2.599 and Pt‐O• = 2.052 and in the O—Pt—O axis Pt—O = 2.016 Å. The oxalato ligands are nearly plane with O—C—C—O torsion angles of 0.2—3.6°. In the vibrational spectra the PtX′ stretching vibrations are observed at 362 and 365 ( 1 ), 231 and 240 ( 2 ) and 172 and 183 cm—1 ( 3 ). The PtO• and PtO stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 400—800 cm—1. Based on the molecular parameters of the X‐ray determination ( 3 ) and estimated data ( 1 , 2 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtCl′) = 2.35, fd(PtBr′) = 2.20, fd(PtI′) = 1.81 and fd(PtO•) = 2.57 ( 1 ), 2.42 ( 2 ) and 2.15 ( 3 ) and fd(PtO) = 2.65 mdyn/Å. Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 6438.8 ( 1 ), 5988.8 ( 2 ) and 4917.3 ppm ( 3 ). 相似文献
20.
Joseph Grobe Duc Le Van Franz Immel Marianne Hegemann Bernt Krebs Mechtild Lge 《无机化学与普通化学杂志》1996,622(1):24-34
Reactive E = C(pp)π-Systems. XLII [1]. Novel Coordination Compounds of 2-(Diisopropylamino)-1-phosphaethyne: [{η4-(iPr2NCP)2}Ni{η2-(iPr2NCP)}], [(Ph3P)2Pt{η2-(iPr2NCP)}], and [Co2(CO)6{η2-μ2-(iPr2NCP)}] 2-(Diisopropylamino)-phosphaethyne iPr2N? C?P ( 2 ) reacts with the Ni(0)-complexes [Ni(1,5-cyclooctadiene)2] and [Ni(CO)3(1-azabicyclo[2.2.2]octane)], respectively, to give the novel complex [{η4-(iPr2NCP)2}Ni{η2-(iPr2NCP)}] ( 5 ), with the 1,3-diphosphacyclobutadiene derivative and 2 (side-on) as π-ligands. The molecular structure of 5 determined by X-ray diffraction on single crystals proves the spin systems and rotational barriers deduced from NMR-data (1H, 13C-, 31P). The PC distances of the four-membered ring of 1.817(2) and 1.818(2) Å – as expected – are considerably longer than the PC bond of the η2-coordinated phosphaalkyne 2 [1.671(2) Å]. – In the reactions of 2 with [(Ph3P)2Pt(C2H4)] or [Co2(CO)8] the ligand properties of 2 resemble those of alkynes affording the complexes [(Ph3P)2Pt{η2-(iPr2NCP)}] ( 7 ) with side-on coordinated 2 and [Co2(CO)6{η2-μ2-(iPr2NCP)}] with 2 acting as a 4e donor bridge in quantitative yield. In attempts to prepare copper(I) complexes of the aminophosphaalkyne 2 by reaction with CuCl or CuI the only isolable product formed in reasonable amounts under the influence of air and moisture is the 1 λ3, 3 λ5-diphosphetene (iPr2N) ( 10 ) (isolated yield: ca. 20%). The crystal structure analysis of 10 indicates a strong structural relationship to the diamino-2-phosphaallyl cation [Me(iPr2N)]+ ( 12 ), the 1,3-diphosphacyclobutadiene ligand (iPr2NCP)2 in the binuclear complex [{η1, μ2-(iPr2NCP)2}Ni2(CO)6] ( 3a ) as well as to the heterocycles (dme)2LiOE2′ (E′ = S, 11a ; E′ = Se, 11b ) prepared by Becker et al. [11b, 35]. 相似文献