首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using the right‐induced technique and the eigenfunction method, concise algebraic expressions of the projection operators for both single‐valued and double‐valued representations are found for the group chain O?T?C3 in terms of the projection operators of T?C3. Extremely simple relations are discovered between the symmetry adapted functions (SAFs) of the groups T and O; namely the SAFs of the subgroup T which have proper symmetry are the SAFs of the group O. The projection operators and SAFs are functions of only the quantum numbers of the group chain [the analogy of ( j,m) for the group chain SO3?SO2], without involving any irreducible matrix elements. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 259–270, 2001  相似文献   

2.
Concise algebraic expressions of the symmetry‐adapted functions (SAFs) for both single‐valued and double‐valued representations are derived for the group chain OTD2C2 and OD4D2C2, which are functions of only the quantum numbers of the respective group chain without involving any irreducible matrix elements. It is shown that the SAFs of the cubic groups G=O,Td,Th,Oh can be expressed in a simple way in terms of the SAFs of the group T. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 585–599, 2000  相似文献   

3.
The generator coordinate method was implemented in the unrestricted Hartree‐Fock formalism. Weight functions were built from Gaussian generator functions for 1s, 2s, and 2p orbitals of carbon and oxygen atoms. These weight functions show a similar behavior to those found in the generator coordinate restricted Hartree‐Fock method, i.e., they are smooth, continuous, and tend to zero in the limits of integration. Moreover, the weight functions obtained are different for spin‐up and spin‐down electrons what is a result from spin polarization. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

4.
Equilibrium intensive thermodynamic properties of p‐particles (p‐ons), i.e., composed particles formed by few particles of the same nature such as fermion or boson pairs (p=2), trios (p=3), etc., are investigated. The relation of the p‐particle correlation functions to its p‐hole counterparts and an existing covariant structure in the hierarchy of the p‐particle correlation functions allow these generalized intensive properties to be properly defined and characterized. The connection between these generalized properties of the composed objects and those of the components is also derived. An explicit derivation of the chemical potential for pairs and its generalization to p‐particles is performed. Such results are further extended to any intensive property. Finally, the present development allows some previous results to be clearly interpreted thus yielding an important support for our theory. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem 85: 63–71, 2001  相似文献   

5.
A new derivation is given for the Waller–Hartree–Fock double-determinantal spatial wave function. One starts from the single-determinant wave function in which a orbitals are doubly occupied, and decomposes it into a sum of products of spatial and spin functions. The spatial product of the first genealogical spin eigenfunction is a double-determinantal function. The derivation is based on the simple form of U1?(P) when the representation matrix is obtained from the genealogical spin eigenfunction.  相似文献   

6.
Equilibrium intensive thermodynamic properties of p‐particles (p‐ons), i.e., composed particles formed by few particles of the same nature such as fermion or boson pairs (p=2), trios (p=3), etc., are investigated. The relation of the p‐particle correlation functions to its p‐hole counterparts and an existing covariant structure in the hierarchy of the p‐particle correlation functions allow these generalized intensive properties to be properly defined and characterized. The connection between these generalized properties of the composed objects and those of the components is also derived. An explicit derivation of the chemical potential for pairs and its generalization to p‐particles is performed. Such results are further extended to any intensive property. Finally, the present development allows some previous results to be clearly interpreted thus yielding an important support for our theory. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

7.
Technical problems connected with use of the Born‐Oppenheimer clamped‐nuclei approximation to generate electronic wave functions, potential energy surfaces (PES), and associated properties are discussed. A computational procedure for adjusting the phases of the wave functions, as well as their order when potential crossings occur, is presented which is based on the calculation of overlaps between sets of molecular orbitals and configuration interaction eigenfunctions obtained at neighboring nuclear conformations. This approach has significant advantages for theoretical treatments describing atomic collisions and photo‐dissociation processes by means of ab initio PES, electronic transition moments, and nonadiabatic radial and rotational coupling matrix elements. It ensures that the electronic wave functions are continuous over the entire range of nuclear conformations considered, thereby greatly simplifying the process of obtaining the above quantities from the results of single‐point Born‐Oppenheimer calculations. The overlap results are also used to define a diabatic transformation of the wave functions obtained for conical intersections that greatly simplifies the computation of off‐diagonal matrix elements by eliminating the need for complex phase factors. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
X‐ray absorption near the iron K edge (XANES) was used to investigate the characteristics of temperature‐induced low‐spin‐to‐high‐spin change (SC) in metallo‐supramolecular polyelectrolyte amphiphile complexes (PAC) containing FeN6 octahedra attached to two or six amphiphilic molecules. Compared to the typical spin‐crossover material Fe(phen)2(NCS)2 XANES spectra of PAC show fingerprint features restricted to the near‐edge region which mainly measures multiple scattering (MS) events. The changes of the XANES profiles during SC are thus attributed to the structure changes due to different MS path lengths. Our results can be interpreted by a uniaxial deformation of FeN6 octahedra in PAC. This is in agreement with the prediction that SC is originated by a structural phase transition in the amphiphilic matrix of PAC, but in contrast to Fe(phen)2(NCS)2, showing the typical spin crossover being associated with shortening of all the metal–ligand distances.  相似文献   

9.
Mononuclear complexes are good model systems for evaluating the effects of different ligand systems on the magnetic properties of iron(II) centres. A novel crystal structure of the title compound, [Fe(C18H24N10)](BF4)2·CH3OH, with one molecule of methanol per formula unit exhibits a strictly sixfold coordination sphere associated with a low‐spin configuration at the metal centre. The incorporated methanol solvent molecule promotes extended hydrogen‐bonding networks between the tetrafluoridoborate anions and the cationic units. A less constrained crystal structure regarding close contacts between the tetrafluoridoborate anions and the cationic units allows a spin transition which is inhibited in the previously published hydrate of the title compound.  相似文献   

10.
Spin‐projected spin polarized Møller–Plesset and spin polarized coupled clusters calculations have been made to estimate the cyclobutadiene automerization, the ethylene torsion barriers in their ground state, and the gap between the singlet and triplet states of ethylene. The results have been obtained optimizing the geometries at MP4 and/or CCSD levels, by an extensive Gaussian basis set. A comparative analysis with more complex calculations, up to MP5 and CCSDTQP, together with others from the literature, have also been made, showing the efficacy of using spin‐polarized wave functions as a reference wave function for Møller–Plesset and coupled clusters calculations, in such problems. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
12.
The interaction of the XY n‐spin cyclic model with a two‐mode cavity field in the rotating‐wave approximation is investigated in the framework of a generalized Jaynes–Cummings two‐level system consisting of the vacuum state and a thermally averaged manifold of excited sates. Computation of the energy of this manifold allows this interaction to be examined in off‐resonant states. Time evolution of the population inversion, photon distribution, and temperature distribution for an excited initial state are computed via second‐ and third‐order perturbation expansion of the time evolution operator matrix elements for the excited and ground states, respectively and for an ideal squeezed initial coherent state of the cavity field. It was assumed that the two modes have initially the same photon distribution. The pattern of the spin population inversion appears as a manifestation of multiple and complicated inerferences, which is mathematically reflected in a double discrete summation that appears in the calculation of the dynamics. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

13.
We have implemented ab initio linear combinations of Gaussian‐type orbital calculations with generalized localized spin density approximation (GLSDA) for a dimer of equilateral H3 as a model of the noncollinear magnetic clusters. It has been found that the GLSDA solution with the three‐dimensional noncollinear spin structure is, contrary to prior band calculations by other groups, the ground state near the Oh conformation. Further computational results are compared to that of ab initio generalized Hartree–Fock. The difference between them and the influence of the correlation correction were discussed. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

14.
The spin‐free wave function due to Fock (Zh Eksp Teor Fiz, 1940, 10, 961) is re‐examined with a stress on the reduced density matrix (RDM) theory. The key notion of the Fock approach is the cyclic symmetry of wave functions. It is a specific algebraic identity involving transpositions of numbers taken from two different columns of the corresponding Young tableau. We show first how to construct symmetry adapted states by accounting for high‐order cyclic symmetry conditions. For Young's projectors, it gives a new expression including nothing but antisymmetrizers. Next, transforming the Fock spin‐free state by a duality operator (the star operator in exterior algebra), we arrive at the representation closely related to spin‐flip models. In such spin‐flip models, a coupling operator is the basic object for which we show that the cyclic symmetry is transformed into a tracelessness of the coupling operator. The main results are related to the spin‐free theory of spin properties. In particular, the theorem previously stated (Luzanov and Whyman, Int J Quantum Chem, 1981, 20, 1179) is refined by an explicit general representation of spin density operators through spin‐free (charge) RDMs. Some applications implicating high‐order RDMs (collectivity numbers, the unpaired electron problem, cumulant spin RDMs, spin correlators, etc.) are also considered. For spin‐free RDM components, a new projection procedure without constructing any symmetry adapted state is proposed. An unsolved problem of constructing orthogonal representation matrices within the Fock theory is raised. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

15.
The Fukui function is often used in its atom‐condensed form by isolating it from the molecular Fukui function using a chosen weight function for the atom in the molecule. Recently, Fukui functions and matrices for both atoms and bonds separately were introduced for semiempirical and ab initio levels of theory using Hückel and Mulliken atoms‐in‐molecule models. In this work, a double partitioning method of the Fukui matrix is proposed within the Hirshfeld‐I atoms‐in‐molecule framework. Diagonalizing the resulting atomic and bond matrices gives eigenvalues and eigenvectors (Fukui orbitals) describing the reactivity of atoms and bonds. The Fukui function is the diagonal element of the Fukui matrix and may be resolved in atom and bond contributions. The extra information contained in the atom and bond resolution of the Fukui matrices and functions is highlighted. The effect of the choice of weight function arising from the Hirshfeld‐I approach to obtain atom‐ and bond‐condensed Fukui functions is studied. A comparison of the results with those generated by using the Mulliken atoms‐in‐molecule approach shows low correlation between the two partitioning schemes.  相似文献   

16.
We present the closed form of the reduced density matrices (RDMs) of arbitrary order for configuration interaction (CI) wave functions at any excitation level, up to the full CI. A special operator technique due to Bogoliubov is applied and extended. It focuses on constructions of matrix‐covariant expressions independent of the basis set used. The corresponding variational CI equations are given in an explicit form containing the matrices related to conventional excitation operators. A subsequent transformation of the latter to an irreducible form makes it possible to generate the matrix‐covariant representation for coupled cluster (CC) models. Here this transformation is performed for a simplified high‐order CC scheme somewhat reminiscent of the quadratic CI model. A generalized spin‐flip approximation closely related to high‐order CI and CC models is presented, stressing on a possible inclusion of nondynamical and dynamical correlation effects for multiple bond breaking. A derivation of the full CI and simple CC models for systems involving effective three‐electron interactions is also given, thereby demonstrating the capability of the proposed method to deal with complicated many‐body problem. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

17.
When a system under consideration has some symmetry, usually its Hamiltonian space can be parallel partitioned into a set of subspaces, which is invariant under symmetry operations. The bases that span these invariant subspaces are also invariant under the symmetry operations, and they are the symmetry‐invariant bases. A standard methodology is available to construct a series of generator functions (GFs) and corresponding symmetry‐adapted basis (SAB) functions from these symmetry‐invariant bases. Elements of the factorized Hamiltonian and overlap matrix can be expressed in terms of these SAB functions, and their simple representations can be deduced in terms of GFs. The application of this method to the Heisenberg spin Hamiltonian is demonstrated. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

18.
The generalized relativistic effective core potential (GRECP) approach is employed in the framework of multireference single‐ and double‐excitation configuration interaction (MRD‐CI) method to calculate the spin‐orbit splitting in the 2Po ground state of the Tl atom and spectroscopic constants for the 0+ ground state of TlH. The 21‐electron GRECP for Tl is used, and the outer core 5s and 5p pseudospinors are frozen with the help of the level shift technique. The spin‐orbit selection scheme with respect to relativistic multireference states and the corresponding code are developed and applied in the calculations. In this procedure both correlation and spin‐orbit interactions are taken into account. A [4,4,4,3,2] basis set is optimized for the Tl atom and employed in the TlH calculations. Very good agreement is found for the equilibrium distance, vibrational frequency, and dissociation energy of the TlH ground state (Re=1.870 Å, ωe=1420 cm−1, De=2.049 eV) as compared with the experimental data (Re=1.872 Å, ωe=1391 cm−1, De=2.06 eV). © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 409–421, 2001  相似文献   

19.
We present an implementation of the spin‐dependent unitary group approach to calculate spin densities for configuration interaction calculations in a basis of spin symmetry‐adapted functions. Using S2 eigenfunctions helps to reduce the size of configuration space and is beneficial in studies of the systems where selection of states of specific spin symmetry is crucial. To achieve this, we combine the method to calculate U(n) generator matrix elements developed by Downward and Robb (Theor. Chim. Acta 1977, 46, 129) with the approach of Battle and Gould to calculate U(2n) generator matrix elements (Chem. Phys. Lett. 1993, 201, 284). We also compare and contrast the spin density formulated in terms of the spin‐independent unitary generators arising from the group theory formalism and equivalent formulation of the spin density representation in terms of the one‐ and two‐electron charge densities.  相似文献   

20.
The correlation calculation of the electronic structure of PbH is carried out with the generalized relativistic effective core potential (GRECP) and multireference single‐ and double‐excitation configuration interaction (MRD‐CI) methods. The 22‐electron GRECP for Pb is used and the outer core 5s, 5p, and 5d pseudospinors are frozen using the level‐shift technique, so only five external electrons of PbH are correlated. A new configuration selection scheme with respect to the relativistic multireference states is employed in the framework of the MRD‐CI method. The [6, 4, 3, 2] correlation spin–orbit basis set is optimized in the coupled cluster calculations on the Pb atom using a recently proposed procedure, in which functions in the spin–orbital basis set are generated from calculations of different ionic states of the Pb atom and those functions are considered optimal that provide the stationary point for some energy functional. Spectroscopic constants for the two lowest‐lying electronic states of PbH (2Π1/2, 2Π3/2) are found to be in good agreement with the experimental data. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号