首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we describe a flexible method for preparing conducting building blocks: SiO2@polystyrene@polypyrrole sandwich multilayer composites and hollow polypyrrole (PPy) capsules with movable SiO2 spheres inside. First, SiO2@polystyrene (PS) core/shell composites were synthesized, and then SiO2@PS@PPy sandwich multilayer composites were prepared by chemical polymerization of pyrrole monomer on the surface of SiO2@PS composites. Furthermore, hollow polypyrrole capsules with movable SiO2 spheres inside were obtained after removal of the middle PS layer. The diameter of sandwich multilayer composites could easily be controlled by adjusting the dosage of pyrrole monomer. The conductivities of composites increased with the increase of PPy content. After the insulating PS layer was selectively etched, the conductivities of hollow capsules with movable SiO2 spheres inside were much higher than those of the corresponding sandwich multilayer composites.  相似文献   

2.
In this paper we report on the interaction between photosensitive azobenzene-containing polymer films and on top adsorbed graphene multilayers. The photosensitive polymer film changes its topography under irradiation with light interference patterns according to their polarization distribution. The multilayer graphene follows the deformation of the polymer film and stretches accordingly. Using confocal Raman microspectroscopy we can detect the appearance of additional peaks in the Raman spectrum of the photosensitive polymer film upon irradiation indicating a molecular interaction at the interface between the graphene multilayer and the polymer matrix. Multi-component analysis of the specific Raman bands shows that the interaction involves the graphene rings and the aromatic rings of the azobenzenes causing the strong adhesion between the two materials.  相似文献   

3.
金属 塑料多层复合材料由钢背、烧结多孔青铜中间层和聚四氟乙烯 (PTFE)与填料混合物组成的表层复合而成 ,具有金属和塑料原有的优良性能 ,如高的机械性能、低的热膨胀系数和低的摩擦系数、良好的导热性和优异的减磨性[1~ 3 ] 。众所周知 ,玻璃纤维可用来提高PTFE复合材料的力学性能[4~ 6 ] 。纤维与基体之间的界面结合力起着控制聚合物复合材料力学性能的重要作用 ,并主要受纤维表面处理的影响[7~ 9] 。Watanabe[10 ] 认为只填充玻璃纤维的PTFE复合材料在水中的磨损大于其它复合材料 ,玻璃纤维易受磨损且细碎的玻…  相似文献   

4.
By using a combination of atomic force and confocal microscopy, we explore the deformation properties of multilayer microcapsules filled with a solution of strong polyelectrolyte. Encapsulation of polyelectrolyte was performed by regulation of the multilayer shell permeability in water-acetone solutions. The "filled"capsules prepared by this method were found to be stiffer than "hollow" ones, which reflects the contribution of the excess osmotic pressure to the capsule stiffness. The force-deformation curves contain three distinct regimes of reversible, partially reversible, and irreversible deformations depending on the degree of compression. The analysis of the shape of compressed capsules and of the inner polyelectrolyte spacial distribution allowed one to relate the deformation regimes to the permeability of the multilayer shells for water and inner polyelectrolyte at different stage of compression.  相似文献   

5.

The unique properties of graphene make it a very attractive application, although there are still no commercial products in which graphene would play a key role. Good thermal conductivity is undoubtedly one of the attributes which can be easily used both in materials involving large monoatomic layers, that are very difficult to obtain, as well as multilayer graphene flakes, which have been commercially available on the market for several years. The article presents the results of tests on the characteristic thermal properties of composites with the addition of 2–15% of multilayer graphene (MLG) crystals. The motivation of the study was literature reports showing the possibility of increasing the thermal conductivity of composites with MLG participation in the copper matrix. Since the production of composites with increased properties is associated with obtaining a strong orientation of the flakes in the structure, composites with hBN flakes exhibiting significantly worse but also directional thermal properties were produced for comparison. The paper showed a strong influence of flake morphology on the possibility of creating a directional structure. The obtained Cu/MLG composites with the addition of only 2% MLG were characterized by an increase in the thermal conductivity coefficient of about 30% in relation to sinters without the participation of MLG.

  相似文献   

6.
The deposition of polysaccharide-based self-assembled nanocoatings onto damaged arteries is described as a means not only to protect a damaged artery against thrombogenesis, but also to control the healing processes by incorporating biologically active components within the multilayer. As shown by confocal microscopy, the polysaccharide multilayer was retained on the artery in physiological condition and prevented platelet adhesion. Diffusion of the polysaccharides within the artery was also observed and may be used to efficiently target the vascular wall. The NO-precursor l-arginine was used a drug model and incorporated within the self-assembled layers.  相似文献   

7.
The permeability of ions and small polar molecules through polyelectrolyte multilayer capsules templated on red blood cells was studied by means of confocal microscopy and electrorotation. Capsules were obtained by removing the cell after polyelectrolyte multilayer formation by means of NaOCl treatment. This procedure results in cross-linking of poly(allylamine hydrochloride) (PAH) molecules and destroying poly(styrene sulfonate) (PSS) within the multilayer. Capsules are obtained being remarkably different from layer-by-layer (LbL) capsules. These capsules are rather permeable for low as well as for high molecular weight species. However, upon adsorption of extra polyelectrolyte layers the permeability decreased remarkably. The assembly of six supplementary layers of PAH and PSS rendered the capsule almost impermeable for fluorescein. Resealing by supplementary layers is a potential means for filling and release control. By means of electrorotation measurements, it was shown that the capsule walls obtained isolating properties in electrolyte solutions. Conclusions are drawn concerning the mechanism of permeability through cell templated polyelectrolyte multilayer capsules.  相似文献   

8.
聚合物基金属复合材料研究进展   总被引:4,自引:0,他引:4  
系统评述了聚合物基金属复合材料这一新兴交叉学科的科学范畴、聚合物基体的作用、金属相形态结构、基体与金属两相之间的相互作用。以金属相的形态结构为线索,阐述了该类复合材料在层状复合材料、多层复合材料、纳米复合材料等几个重要方面的形态结构的设计、制备、物性与应用。  相似文献   

9.
研究了稀土元素处理玻璃纤维填充金属-塑料多层复合材料在冲击载荷、干摩擦条件下的摩擦和磨损性能,并利用扫描电子显微镜(SEM)对磨损表面进行了观察和分析,结果表明,用稀土表面改性剂处理玻璃纤维表面,可以提高玻璃纤维与聚四氟乙烯之间的界面结合力,改善复合材料的界面性能,并有利于在偶件表面形成分布均匀、结合强度高的转移膜,使复合材料与偶件表面之间的对摩减轻,大幅度地降低了复合材料的磨损,从而使复合材料具有优良的摩擦性能和抗冲击磨损性能。  相似文献   

10.
利用自主设计的一套可进行微层共挤出的口模,分别制备了2层、16层、32层和64层丙烯-乙烯共聚物(PPE)/乙烯-1-辛烯共聚物(POE)交替层状复合材料。研究了制得的层状复合材料的应力-应变行为,利用等效盒子模型(equivalent box model)描述了层状复合材料与相应的常规PPE/POE共混材料力学行为的区别.通过对共挤出材料和共混材料的拉伸数据进行分析后发现,具有层状结构特别是多层结构的共挤出材料具有比共混材料更为优异的屈服和断裂伸长性能.  相似文献   

11.
李艳华  黄可龙 《化学学报》2011,69(18):2185-2190
以葡萄糖为前驱物,采用水热法合成了胶态碳球,然后利用胶态碳球制备了Co3O4/CoO/Co/石墨复合材料.此复合材料与其它研究者采用类似方法制备的物质相比具有完全不同的结构,它们是由多层不同物质组成的球形结构,其最外层是Co3O4,第二层是CoO,第三层是Co,最里面一层是石墨.采用循环伏安和恒电流充放电等方法对Co3...  相似文献   

12.
Raman spectra of highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes are carried out at different laser powers and different excitation energies. The effects of the laser heating and the double resonance Raman scattering are investigated as a prerequisite for a correct interpretation of the Raman spectra of carbon materials-based composites. The Raman spectra of multilayer graphene and multiwall carbon nanotubes embedded in a silicone matrix are also analyzed in an attempt to get some insights into the polymer–filler interface.  相似文献   

13.
The authors report dynamic and coagulation properties of a dispersion of polyelectrolyte multilayer microcapsules filled with solutions of a strong polyelectrolyte. Microcapsules are shown to take a charge of the sign of encapsulated polyions and are characterized by a nonuniform distribution of inner polyions, which indicates a semipermeability of the shell and a leakage of counterions. The capsule self-diffusion coefficient in the vicinity of the similarly charged wall is measured using a particle tracking procedure from confocal images of the dispersion. The diffusion of capsules in the force field suggests that the effective interaction potential contains an electrostatic barrier, so that we deal with the same types of interaction forces as for solid particles. The theoretical estimates of the authors show that when microcapsules are in close proximity, their interaction should even be quantitatively the same as that of colloids with the same surface potential. However, due to the mobility of inner polyions they might repel stronger at large distances. The authors thus conclude that the encapsulation of charged polymers is an important factor in determining the adhesion and interaction properties of multilayer microcapsules.  相似文献   

14.
In this work we aimed at forming partially recycled polymer composites of appropriate mechanical properties and flame retardancy. Multilayer composite structures proved to be suitable to fulfill all of these requirements. Core-shell structures presented here contain two-component thermosets, i.e. epoxy, recycled polyurethane and polyisocyanurate, as matrices reinforced with waste fillers such as short basalt fibers and wood chips. Flame retardancy and mechanical properties of the core-shell structures were investigated by the conventional methods of characterization. The developed cost-effective multilayer composites can be applied as heat and sound insulating panels e.g. multifunctional sheets for construction or automotive industry.  相似文献   

15.
The uptake of polyelectrolyte multilayer coated colloids into cells, subsequent defoliation and plasmid delivery was studied by means of confocal microscopy and flow cytometry. Silica particles coated layer-wise with protamine and dextran sulfate were given to HEK 293T cells. Optimum uptake was found with protamine as the top layer. The particle uptake likely follows an non-receptor-mediated endocytotic pathway. Defoliation of polyelectrolyte multilayer coated particles within cells was demonstrated by the release of incorporated plasmids as indicated by the expression of plasmid encoded proteins using the enhanced green fluorescence proteine (pEGFP-C1) plasmid and a red fluorescence protein (pDsRed1-N1) plasmid. This proves, together with the direct observation of fluorescent layer debris, the defoliation of coated particles and the release of layer components into the cytoplasm. Particle uptake and GFP expression.  相似文献   

16.
In this paper, novel hollow polyelectrolyte multilayer tubes from poly(diallyldimethylammonium chloride) (PDADMAC), poly(styrene sulfonate) (PSS), and poly(allylamine hydrochloride) (PAH) were prepared: Readily available glass fiber templates are coated with polyelectrolytes using the layer-by-layer technique, followed by subsequent fiber dissolution. Depending on the composition of the polymeric multilayer, stable hollow tubes or tubes showing a pearling instability are observed. This instability corresponds to the Rayleigh instability and is a consequence of an increased mobility of the polyelectrolyte chains within the multilayer. The well-defined stable tubes were characterized with fluorescence microscopy, confocal laser scanning microscopy, and atomic force microscopy (AFM). The tubes were found to be remarkably free of defects, which results in an impermeable tube wall for even low molecular weight molecules. The mechanical properties of the tubes were determined with AFM force spectroscopy in water, and because continuum mechanical models apply, the Young's modulus of the wall material was determined. Additionally, scaling relations for the dependency of tube stiffness on diameter and wall thickness were validated. Because both parameters can be experimentally controlled by our approach, the deformability of the tubes can be varied over a broad range and adjusted for the particular needs.  相似文献   

17.
Lithium-ion battery separators are receiving increased consideration from the scientific community. Single-layer and multilayer separators are well-established technologies, and the materials used span from polyolefins to blends and composites of fluorinated polymers. The addition of ceramic nanoparticles and separator coatings improves thermal and mechanical properties, as well as electrolyte uptake and ionic conductivity. The state-of-art separators are actively involved in the cell chemistry through specific functional groups on their surface. Among the numerous properties, safety features and long cycle life are high-priority requirements for next-generation lithium-ion batteries.  相似文献   

18.
A novel approach to assemble multilayer films of Pt nanoparticle/multiwalled carbon nanotube (MWNTs) composites on Au substrate has been developed for the purpose of improving the methanol oxidation efficiency by providing high catalytic surface area. MWNTs were firstly functionalized with 4‐mercaptobenzene and then assembled on an Au substrate electrode. Pt nanoparticles were fabricated and attached to the surface of the functionalized MWNTs subsequently. Thus a layer of Pt/MWNT composites were assembled on the Au substrate electrode. Repeating above process can assemble different layers of film of Pt/MWNTs composites on the Au electrode. Cyclic voltammetry shows that the Au electrode modified with two layers of film of Pt/MWNT composites exhibits high catalytic ability and long‐term stability for methanol oxidation. The layer‐by‐layer self‐assembly technique provides an efficient strategy to construct complex nanostructure for improving the methanol oxidation efficiency by providing high catalytic surface area.  相似文献   

19.
Recently, noticeably enhanced flame retardancy of multilayered self-reinforced composites, flame retarded with common ammonium polyphosphate based intumescent system, was described. In this paper the observed novel flame retardant synergism between intumescent additive system and highly oriented polymer fibres is further studied. The ignitability and combustion behaviour of flame retarded multilayer self-reinforced composites were compared to flame retardant compounds, prepared by simple melt compounding, of identical low additive contents, both when the heat was applied parallel (UL-94 tests) and perpendicular (cone calorimetric tests) with the direction of the embedded oriented tapes in self-reinforced composites. SEM and EDS analyses supported the different foaming process of the two types of samples to be understood, while the structure and character of the finally (after combustion) obtained charred layers were examined by compression tests. Considering the results of all the applied testing methods, the complex picture of the mechanism behind the enhanced flame retardant efficiency of flame retarded self-reinforced composites could be clarified.  相似文献   

20.
The layer-by-layer assembly of graphene oxide and diazoresin is carried out via the electrostatic and hydrogen bond interactions on planar substrates and colloidal templates. The successful planar and spherical growth of multilayer could be investigated by UV-vis spectrophotometry and scanning electron microscopy, respectively. Subsequent UV irradiation or heating would convert the ionic bonds and hydrogen bonds to covalent bands, which significantly improves the stability of the multilayer composite against solvent etching. For the cross-linked core-shell composites, the template cores could be removed by dissolution and hollow microspheres are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号