首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High‐quality positron lifetime measurements (70 million total counts) are reported for polyethylenes (PEs) of different crystallinities (Xc = 3–82%). The specific volumes of the crystalline and amorphous phases (Vc and Va, respectively) were estimated from density and wide‐angle X‐ray scattering (WAXS) experiments. Some samples (those with low values of Xc) were branched PEs, and those with high values of Xc were linear PEs for which Xc was varied with changes in the crystallization temperature. Both Vc and Va increase with decreasing Xc in the range 0% ≤ Xc ≤ 56% (the branched PEs) but are constant for Xc ≥ 56% (the linear PEs). The lifetime spectra were analyzed with the MELT and LIFSPECFIT routines. Artifacts that can appear in the spectrum analysis were checked via an analysis of computer‐generated spectra. Four lifetime components appeared in all of the PEs; the two long‐lived ones are attributed to pick‐off annihilation of ortho‐positronium (o‐Ps) in crystalline regions (τ3) and in holes of the amorphous phase (τ4). With increasing Xc, τ3 decreases from about 1.2 to 1 ns, τ4 decreases from 3.0 to 2.5 ns, and the intensity I4 decreases from 29 to 0%. An increase in I3 from 6 to 12% was observed. A comparison with simulations shows that the true I3 value approaches 0 for Xc → 0%. The decrease in I4 is weaker than the increase in Xc; this leads to the conclusion that the apparent specific o‐Ps yield in the amorphous phase I4Xc increases with Xc. Possible reasons for this surprising results are discussed. The fractional free hole volume [h = (Va ? Vocc)/Va, where Vocc is the crystalline occupied volume] was estimated from density and WAXS results. Between Xc = 0 and 56%, h decreases from 0.151 to 0.090, but it does not change further above Xc = 56%. The mean size (v) of the local free volumes (holes) estimated from τ4 decreases from 200 to 150 Å3. The number density of holes (Nh) calculated from these values (Nh = h/v) also decreases from 0.8 to 0.6 nm?3 in the range 0% ≤ Xc ≤ 56%. The values of Va, Vc, h, and Nh increase with an increasing degree of branching but do not vary for linear PEs. The possible influence of a crystalline–amorphous interfacial phase (three‐phase model) on the observed lifetime parameters is also discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 65–81, 2002  相似文献   

2.
DFT calculations using MPWB1K method with COSMO continuum solvation model have been carried out to quantify the trans influence of various X ligands (EX) in [PtIICl3X]n− complexes as well as the mutual trans influence of two X and Y ligands (EXY) in [PtIICl2XY]n− complexes. A quantitative structure energy relationship (QSER) is derived for predicting the EXY using EX and EY and this relationship showed a strong similarity to a QSER derived for predicting EXY of [PdIICl2XY]n− complexes. Quantification of the contributions of EX and EXY to the bond dissociation energy of the ligand X (BDEX) in complexes of the type [MIIX(Y)X′(Y′)] (M = Pd, Pt) is also achieved. The BDEX of any ligand X in these complexes can be predicted using the equations, viz. BDEX(Pd) = 1.196EX − 0.603EXY − 0.118EX’Y’ + 0.442DX + 15.169 for Pd(II) complexes and BDEX(Pt) = 1.420EX − 0.741EXY − 0.125EX’Y’ + 0.498DX + 13.852 for Pt(II) complexes, where DX corresponds to the bond dissociation energy of X in [MIICl3X]n− complexes. These expressions suggest that the mutual trans influence from X and Y is more dominant than the mutual trans influence from X′ and Y′ and both factors contribute significantly to the weakening of M-X bond. We also obtained a strong linear relationship between EX and the electron density ρ(r) at the bond critical point of M-Cl bond trans to the X in [MIICl3X]n− and this allows us to express the BDEX(Pd) and BDEX(Pt) in terms of only the ρ(r) and DX. We have demonstrated that using a database comprising of DX and the ρ(r), the bond dissociation energy of X in complexes of the type [MIIX(Y)X′(Y′)] can be predicted.  相似文献   

3.
Summary.  The geometries and total energies of several T-shaped platinum(II) complexes of the type (H3P)PtXY (X, Y=Cl, CH3, SiH3, Si(OH)3) were calculated by ab-initio methods. In the most stable isomer, the ligand with the smallest trans influence is trans to the PH3 ligand. The trans influence increases in the order Cl<CH3<SiH3<Si(OH)3. Corresponding author. E-mail: uschuber@mail.2serv.tuwien.ac.at Received October 14, 2002; accepted October 14, 2002 Published online May 2, 2003  相似文献   

4.
The kinetics and mechanism of the nucleophilic substitution reactions of p‐chlorophenyl aryl chlorophosphates ( 2 ) with anilines are investigated in acetonitrile at 55°C. Relatively large magnitudes of ρX and βX values are indicative of a large degree of bond making in the TS. Smaller magnitudes of ρX (0.20 for X = H) and ρXY (?0.30) than those for the corresponding reactions with phenyl aryl chlorophosphates ( 1 ) (ρX = 0.54 for X = H and ρXY = ?1.31) are interpreted to indicate partial electron loss, or shunt, towards the electron acceptor equatorial ligand (p‐ClC6H4O‐) in the bipyramidal pentacoordinated transition state. The inverse secondary kinetic isotope effects (kH/kD = 0.64–0.87) involving deuterated aniline (ND2C6H4X) nucleophiles, and small ΔH? and large negative ΔS? are obtained. These results are consistent with a concerted nucleophilic substitution mechanism. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 632–637, 2002  相似文献   

5.
Preparation of trans-[Pt(N3)4X2]2? (X ? Br, I, SCN, SeCN) by Oxidative Addition to [Pt(N3)4]2? in Organic Solvents By oxidative addition to (TBA)2[Pt(N3)4], dissolved in dichlormethane, trans-(TBA)2[Pt(N3)4X2], X ? Br, I, SCN, SeCN; TBA = Tetrabutylammonium, are formed. The vibrational spectra of these salts are assigned according to point group D4h. From the resonance Raman spectrum of trans-(TBA)2[Pt(N3)4I2] the harmonic vibrational frequency ω1 of v(Pt? I), A1g, is calculated to be 138.50 cm?1 and the inharmonicity constant x11 = 0.27 cm?1. The characteristical feature in the UV/VIS spectra is caused by intensive π(N,X) → a1g, b1g(Pt) CT transitions.  相似文献   

6.
The benzylidene(pentacarbonyl)tungsten complexes (CO)5W[C(H)C6H4R-p] (R = H (Ia), Me (Ib)) react with trimethylphosphite, triphenylarsane and triphenylstibane (XY3), respectively, via addition of XY3 to the benzylidene carbon to give the new phosphorus, arsenic and antimony ylide complexes (CO)5W[C(H)(C6H4R-p)XY3] (R = H, XY3 = P(OMe)3 (Va), AsPh3 (VIa), SbPh3 (VIIa); R = Me, XY3 = AsPh3 (VIb)). The formation of the adducts in reversible.  相似文献   

7.
A series of guanidinium salts 1(C n ) m 4(C n ) m ?X bearing phenyl alkoxybenzoate cores have been synthesised and their mesomorphic properties have been investigated by polarising optical microscopy (POM), differential scanning calorimetry (DSC) and powder X-ray diffraction experiments (small-angle X-ray scattering and wide-angle X-ray scattering). While compounds 1(C12)1?X and 3(C12)1?X with one alkoxy chain showed smectic A (SmA) phases irrespective of the counter ion, compounds 1(C12)2?OTf and 3(C12)2?OTf with two alkoxy chains displayed SmA phases and the corresponding chlorides 1(C12)2?Cl and 3(C12)2?Cl displayed Colh. Guanidinium salts 1(C n )3–4(C n )3?X with three alkoxy chains showed Colh phases. Whereas the use of cyclic guanidinium head groups rather than acyclic ones had only a minor influence on the mesophase properties, melting points were significantly decreased by bent core units instead of linear core units. Replacement of chloride counterions by triflate lead to a further depression of the clearing points and shifted the mesophase towards room temperature.  相似文献   

8.
Homoleptic perhalophenyl derivatives of divalent nickel complexes with the general formula [NBu4]2[NiII (C6X5)4] [X=F ( 1 ), Cl ( 2 )] have been prepared by low‐temperature treatment of the halo‐complex precursor [NBu4]2[NiBr4] with the corresponding organolithium reagent LiC6X5. Compounds 1 and 2 are electrochemically related by reversible one‐electron exchange processes with the corresponding organometallate(III) compounds [NBu4][NiIII (C6X5)4] [X=F ( 3 ), Cl ( 4 )]. The potentials of the [NiIII (C6X5)4]?/[NiII (C6X5)4]2? couples are +0.07 and ?0.11 V for X=F or Cl, respectively. Compounds 3 and 4 have also been prepared and isolated in good yield by chemical oxidation of 1 or 2 with bromine or the amminium salt [N(C6H4Br‐4)3][SbCl6]. The [NiIII (C6X5)4]? species have SP‐4 structures in the salts 3 and 4 , as established by single‐crystal X‐ray diffraction methods. The [NiII (C6F5)4]2? ion in the parent compound 1 has also been found to exhibit a rather similar SP‐4 structure. According to their SP‐4 geometry, the NiIII compounds (d7) behave as S=1/2 systems both at microscopic (EPR) and macroscopic levels (ac and dc magnetization measurements). The spin Hamiltonian parameters obtained from the analysis of the magnetic behavior of 3 and 4 within the framework of ligand field theory show that the unpaired electron is centered mainly on the metal atom, with >97 % estimated d contribution. Thermal decomposition of 3 and 4 proceeds with formation of the corresponding C6X5? C6X5 coupling compounds.  相似文献   

9.
summary The low frequency IR and Raman spectra of Cd(DH 4)X 2 (X=Cl, Br;DH=dithiooxamide) have been discussed. On the basis of the cadmium isotope and H-D shift as well as chlorine-bromine substitution a band assignment in the region 500–33 cm–1 has been made. A polymeric structure of Cd(DH 4)X 2 involving both dithiooxamide and halogen bridges with D4h symmetry of the cadmium environment is assumed.
Die niederfrequenten IR- und Raman-Spektren einiger Komplexe von Dithiooxamid mit Cadmiumhalogeniden
Zusammenfassung Die IR- und Raman-Spektren von Cd(DH 4)X 2 (X=Cl, Br;DH=Dithiooxamid) werden im Bereich niedriger Frequenzen diskutiert. Basierend auf Cadmiumisotopen- und H-D-Verschiebungen mit zusätzlicher Cl-Br-Substitution werden die Banden im Bereich von 500–33 cm–1 zugeordnet. Es wird eine polymere Struktur von Cd(DH 4)X 2 unter Anteilnahme sowohl von Dithioxamid- als auch Halogenbrücken mit einer D4h-Symmetrie im Bereich des Cadmiumzentralions angenommen.
  相似文献   

10.
Dimethylsulfone reacts in the binary superacidic systems XF/MF5 (X = H, D; M = As, Sb) under the formation of the corresponding salts of the type [(CH3)2SO(OX)]+[MF6]. The salts are characterized by low temperature vibrational spectroscopy. In case of [(CH3)2SO(OH)]+[SbF6] a single‐crystal X‐ray structure analysis is reported. The salt crystallizes in the orthorhombic space group Pbca with eight formula units per unit cell [a = 10.3281(3) Å, b = 12.2111(4) Å, c = 13.9593(4) Å]. The experimental results are discussed together with quantum chemical calculations on the PBE1PBE/6‐311G++(3pd,3df) level of theory.  相似文献   

11.
The structural stability and energetics of carbon, silicon, and germanium microclusters containing 3?7 atoms have been investigated by using a recently developed empirical many-body potential energy function (PEF), which comprises two- and three-body atomic interactions. The PEF satisfies both bulk cohesive energy per atom and bulk stability exactly. It has been found that the most stable C3?4 microclusters are linear withD h symmetry but C5?7 microclusters are planar withD nh symmetry. Silicon and germanium microclusters show similar structural stability. TheX n (X=Si, Ge;n=3?7) microclusters are found to be most stable in the following forms:X 3 is triangular withD 3h symmetry,X 4 is tetragonal withT d symmetry,X 5 is square pyramidal withD 4h symmetry,X 6 is bipyramidal square withO h symmetry, and finallyX 7 is square pyramidal having two atoms underneath withD 2h symmetry.  相似文献   

12.
Structures XY?3XY?2XY3 of symmetry C2v (of which propane is an example) are examined and the rearrangement due to the internal rotation of the end groups XY3 studied. The isomerization graph is constructed, various forms of which are displayed and the symmetry of which has been determined. The order of the group is 72. There are nine prime (irreducible) representations (4A + E + 4G) with the following partitioning of the elements into classes: 1, 42, 62, 9, 122, 18. When the mechanism for rearrangement is generalized to include enantiomers, a duplex graph is produced with the order of the group 144 which is isomorphic to the group S2(S3,S2) (generalized wreath product of the symmetric group S2 and S3). The corresponding graph has been constructed and displayed in one of more symmetrical forms. Isomorphism of groups of order 144 is discussed and a procedure is outlined in which correspondence between distinctive combinatorial objects is established by inducing permutations of m elements from available permutations of n elements. The scheme is based on selection of suitable graph invariants in one system and their labeling as m objects which form the basis for representation of the symmetry for the other system.  相似文献   

13.
The New Mixed Valent Chalcogenoindates MIn7X9 (M = Rb, Cs; X = S, Se): Structural Chemistry, X‐Ray and HRTEM Investigations Systematic X‐ray and HRTEM investigations on the ternary systems alkali metal (or thallium)–indium–chalcogen proved the existence of mixed valent solids with the simultaneous occurrence of indium species in different states of oxidation. Additionally to the earlier described solids MIn5S7 (M: Na, K, Tl: isotypic to InIn5S7 = In6S7 and TlIn5S7) and KIn5S6 (isotyp to TlIn5S6) in the actual work we present with MIn7X9 (M: Rb, Cs; X: S, Se) a new structure type which also contains indium in the states of oxidation +3 and +2. The formal state of oxidation In2+ corresponds to (In2)4+ ions. A reasonable ionic formulation of these structures is given by: MIn5S7 = M+ 3[In3+] [(In2)4+] 7[S2–] (M = Na, K, Tl), MIn5S6 = M+ [In3+] 2[(In2)4+] 6[S2–] (M = K, Tl), MIn7X9 = M+ 3[In3+] 2[(In2)4+] 9[S2–]. The three structure types show common two dimensional structure elements which contain ethane analogous In2X6 units and cis and trans edge sharing double octahedron chains. The main interest of this work is a crystalchemical discussion taking into account the new compounds MIn7X9 and the results of special HRTEM investigations on MIn7X9. The HRTEM investigations aim on the identification and subsequent preparation of new phases which initially might be visible as nano size crystals or inclusions in the HRTEM only.  相似文献   

14.
The nature of E–E bonding in group 13 compounds X2E–EX2 (E = B, Al, Ga, In, Tl; X = H, F, Cl, Br, I) has been investigated by means of an energy decomposition analysis (EDA) at the BP86/TZ2P level of theory. The calculated equilibrium geometries of all molecules B2X4?Tl2X4 have a perpendicular (D2d) geometry. The largest energy barriers for rotation about the E‐E bond are predicted for the hydrogen species B2H4?Tl2H4. The EDA shows that the rotational barriers of B2X4?Tl2X4 may not be used for an estimate of the hyperconjugative strength in the D2d structures except for the tetrahydrides. The values for the planar (D2h) transition states reveals that π conjugation of the halogen lone‐pair electrons stabilizes the transition states. The bonding analysis shows that hyperconjugation in B2I4 is stronger than in B2H4 although the latter compound has a higher rotational barrier than the former. In B2F4, hyperconjugative stabilization of the perpendicular structure and conjugative stabilization of the planar structure nearly cancel each other yielding a nearly vanishing rotational barrier. The heavier analogues Al2X4?Tl2X4 have low rotational barriers and rather weak hyperconjugative interactions. The larger rotational barriers of the hydrogen systems Al2H4?Tl2H4 compared with the tetrahalogen compounds is explained with the cooperation of the relatively large hyperconjugation in the perpendicular form and the relatively weak conjugation in the planar transition structures. The EDA also indicates that the electrostatic (ΔEelstat) and molecular orbital (ΔEorb) components of the E–E bonding are similar in magnitude.Thecalculated B‐B bond dissociation energies of B2X4 (De = 93.0–108.4 kcal/mol) show that the bonds are rather strong. The heavier analogues Al2X4?Tl2X4 have weaker bonds (De = 16.6–61.7 kcal/mol). In general, the X2E‐EX2 bond dissociation energies follow the trend for atoms E: B ? Al > Ga > In > Tl and for atoms X: H > F > Cl > I.  相似文献   

15.
Force Constants of Compounds of the Type (CH3)3ElCl+X?(El = N, P, As, Sb; X? = SbCl6?) For the cations (CH3)3NCl+ ( 1 ), (CH3)3PCl+ ( 2 ), (CH3)3AsCl+ ( 3 ), and (CH3)3SbCl+ ( 4 ) a normal coordinate analysis using a general valence force field is performed by the method of Fadini. The force constants are discussed. Calculations of the potential energy distribution show, that the skeletal vibrations in 4 are all characteristic vibrations, but there is a strong coupling of vibrations in 1 .  相似文献   

16.
The dihalomethanes CH2X2 (X=Cl, Br, I) were co‐crystallized with the isocyanide complexes trans‐[MXM2(CNC6H4‐4‐XC)2] (M=Pd, Pt; XM=Br, I; XC=F, Cl, Br) to give an extended series comprising 15 X‐ray structures of isostructural adducts featuring 1D metal‐involving hexagon‐like arrays. In these structures, CH2X2 behave as bent bifunctional XB/XB‐donating building blocks, whereas trans‐[MXM2(CNC6H4‐4‐XC)2] act as a linear XB/XB acceptors. Results of DFT calculations indicate that all XCH2–X???XM–M contacts are typical noncovalent interactions with estimated strengths in the range of 1.3–3.2 kcal mol?1. A CCDC search reveals that hexagon‐like arrays are rather common but previously overlooked structural motives for adducts of trans‐bis(halide) complexes and halomethanes.  相似文献   

17.
The thermal behaviors of the complexes of Cu(DMTZB)4X2 (DMTZB=3,3‘-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone, X=NO3 or ClO4) and Cu(DMTZB)2 X2 (X=Br or Cl) in a nitrogen atmosphere were studied under the non-isothermal conditions by simultaneous TG-DTG-DSC, EDS and elemental analysis techniques. The resuits showed that their decomposition proceeded in three different ways mainly depending on the anions in the molecules. The heat effect associated with the decomposition step of DMTZB molecules was also different. The decomposition mechanisms and the kinetic parameters of DMTZB were determined and calculated by jointly using four methods, which showed that its pyrolysis was controlled by D3 mechanism but with different activation energies and pre-exponential factors for different complexes.  相似文献   

18.
A thio­semicarbazone derivative, 2‐acetyl­pyridine 4‐phenyl­thio­semicarbazone, was prepared and complexed to Lewis acids, Sn(CH3)2X2, X = Cl and Br. The products, [SnX(C14H13N4S)(CH3)2], were characterized by single‐crystal X‐ray diffraction, and IR, NMR and Mössbauer spectroscopies. They are isomorphous and crystallize in the monoclinic space group P21/n. The structure determination revealed discrete neutral complexes with the SnIV atom in a distorted octahedral coordination geometry, with the halogeno ligand and the thio­semicarbazone derivative in the equatorial plane and the methyl groups in axial positions.  相似文献   

19.
The bulk cyclopolymerization of diepisulfide, 1,2:5,6‐diepithio‐3,4‐di‐O‐methyl‐1,2:5,6‐tetradeoxy‐D ‐mannitol ( 1 ), was studied using R4N+Br? (R = ? CH3, C2H5, C3H7, C4H9, and C7H15) and (C4H9)4N+X? (X = Cl, I, NO3, and ClO4) as the initiators. All the bulk polymerizations of 1 using quaternary tetraalkylammonium salts at 90 °C proceeded without gelation even at high conversion to produce gel‐free polymers consisting of 2,5‐anhydro‐1,5‐dithio‐D ‐glucitol (I) as the major cyclic repeating unit along with 1,5‐anhydro‐2,5‐dithio‐D ‐mannitol (II) and the desulfurized acyclic unit (III) as the minor units. The polymerization rate and molar fraction of the I unit increased with the increasing alkyl chain length of the tetraalkylammonium cation and the increasing nucleophilicity of the counteranion. Tetrabutylammonium chloride exhibited the highest catalytic activity and the highest stereoselectivity, that is, the thiosugar polymer with I:II:III = 81:15:4 and a number‐average molecular weight of 31.9 × 103 was obtained in 85% yield for a polymerization time of 0.5 h. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 965–970, 2002  相似文献   

20.
Third-order Møller–Plesset perturbation theory (MP 3) with a 6-31G** basis set was applied to study the relative stabilities of H+(X)2 conformations (X ? CO and N2) and their clustering energies. The effect of both basis set extensions and electron correlation is not negligible on the relative stabilities of the H+(CO)2 clusters. The most stable conformation of H+(CO)2 is found to be a Cv structure in which a carbon atom of CO bonds to the proton of H+(CO), whereas that of H+(N2)2 is a symmetry Dh structure. The second lowest energy conformations of H+(CO)2 and H+(N2)2 lie within 2 kcal/mol above the energies of the most stable structures. Clustering energies computed using MP 3 method with the 6-31G** basis set are in good agreement with the experimental findings of Hiraoka, Saluja, and Kebarle. The low-lying singlet conformations of H+(X)3 (X ? CO and N2) have been studied by the use of the Hartree–Fock MO method with the 6-31G** basis set and second-order Møller–Plesset perturbation theory with a 4-31G basis set. The most stable structure is a T-shaped structure in which a carbon atom of CO (or a nitrogen atom of N2) attacks the proton of the most stable conformation of H+(X)2 clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号