首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Cs10Tl6TtO4 (Tt = Si, Ge) and Cs10Tl6SnO3 were synthesized by the reaction of appropriate starting materials at 623–673 K, followed by fast cooling or quenching to room temperature, in arc‐welded tantalum ampoules. According to single‐crystal X‐ray analyses, the compounds crystallize in new structure types (Cs10Tl6TtO4 (Tt = Si, Ge), P21/c and Cs10Tl6SnO3, Pnma), consisting of [Tl6]6– clusters, which can be characterized as distorted octahedra compressed along one of the fourfold axes of an originally unperturbed octahedron, and [SiO4]4–, [GeO4]4– or [SnO3]4– anions. The oxotetrelate thallides can be regarded as “double salts”, which consist of Cs6Tl6 on one side and respective oxosilicates, ‐germanates and ‐stannates on the other, showing almost not any direct interaction between the two anionic moieties, as might be expressed e.g. by the formula [Cs6Tl6][Cs4SiO4]. In contrast to the silicon and germanium compounds, where the oxidation state of the tetrel atom is unambiguously 4+, for the threefold coordinated tin atom in Cs10Tl6SnO3 an oxidation state of 2+ has to be assumed. Thus, the latter reveal further evidence that the so called “hypoelectronic” [Tl6]6– cluster does not require additional electrons and is intrinsically stable. The distortion of [Tl6]6– can be understood in terms of the Jahn–Teller theorem. According to magnetic measurements all title compounds are diamagnetic.  相似文献   

3.
Formation of CoAl3Cl11 at higher Al2Cl6 Pressures The reaction of CoCl2,f with Al2Cl6,g (≈ 3 atm) is investigated considering every component of the gas phase (Al2Cl6, AlCl3, Al3Cl9, CoAlCl5, CoAl2Cl8, CoAl3Cl11) and the deviation from the ideal behaviour. The conclusion is derived that at 600 K from CoCl2,s and larger pressures of Al2Cl6 besides CoAl2Cl8 a small amount of CoAl3Cl11 is formed.  相似文献   

4.
On Thallium(I)-oxochloromolybdates: Synthesis and Crystal Structures of Tl[MoOCl4(NCCH3)], Tl[Mo2O2Cl7], and Tl2[Mo4O4Cl14] and the Structure of Tl2[MoCl6] Black crystals of Tl2[MoCl6] are formed in the reaction of TlCl with MoOCl3 in a sealed evacuated glass ampoule at 350 °C. The crystal structure analysis shows that Tl2[MoCl6] (cubic, Fm m, a = 986.35(7) pm) adopts the K2[PtCl6] structure with a Mo–Cl bond length of 236.6 pm. Tl[MoOCl4(NCCH3)] was obtained by the reaction of TlCl with MoOCl3 in acetonitrile in form of yellow, moisture sensitive crystals. The structure (orthorhombic, Cmcm, a = 746.0(1), b = 1463.8(3), c = 857.3(2) pm) is built of Tl+ cations and octahedral [MoOCl4(NCCH3)] anions in which the acetonitrile ligand is bound in trans position to the oxygen. The reaction of TlCl and MoOCl3 in dichloromethane yields Tl[Mo2O2Cl7] and Tl2[Mo4O4Cl14] as green moisture sensitive crystals. The structure of Tl[Mo2O2Cl7] (orthorhombic, Pmmn, a = 694.3(1), b = 951.9(2), c = 904.7(1) pm) consists of Tl+ cations and dinuclear [Mo2O2Cl7] anions, with two equidistant chlorine bridges of 248.2 and one longer chlorine bridge of 265.7 pm. The oxygen atoms are located in the trans positions of the longer chloro bridge. The structure of Tl2[Mo4O4Cl14] (triclinic, P1¯, a = 692.8(1), b = 919.6(1), c = 998.9(1) pm, α = 104.94(1)°, β = 90.31(1)°, γ = 108.14(1)°) is build of Tl+ cations and [Mo4O4Cl14]2– anions which form tetramers of distorted octahedral, edgesharing (MoOCl5) units with chlorine atoms in the bridging positions. The oxygen atoms are located in the trans positions of the longest chlorine bridges.  相似文献   

5.
The reaction of platinum(II) chloride with 1,2,4‐trichlorobenzene gives the novel platinum complex Pt6Cl12·(1,2,4‐C6H3Cl3). It is the first example of an cocrystallization product of platinum(II) chloride and organic molecules whose crystal structure has been established.  相似文献   

6.
Oxidative Fluorination of (CF3)(R) (R = CF3, Cl) and the Crystal Structure of (CF3)(Cl) F+ AsF6? Oxidative fluorination of (CF3)(R) (R = CF3, Cl) with XeF+MF6? (M = As, Sb) in anhydrous HF results in formation of monofluorsulfonium hexafluorometalates. The salts are characterized by vibrational, NMR, and mass spectra. (CF3)(Cl)F+ AsF6? crystallizes in the monoclinic space group P21/c with a = 9.955(10) Å, b = 11.050(5) Å, c = 12.733(15) Å, β = 97.77(5)°, and Z = 4.  相似文献   

7.
Slow cooling of melts composed of TlCl and BiCl3 allows for the isolation of the compounds Tl3BiCl6 ( 1 ) and TlBi2Cl7 ( 2 ). Compound 1 is formed by sublimation at 480 °C from the black melt of 3 TlCl + 1 BiCl3 as colourless crystals. The crystal structure determination (tetragonal, P42/m) consists of nearly regular octahedral [BiCl6]3– anions and two independent Tl+ cations, which have coordination number 8 in form of a slightly distorted cube and 10 in form of an Edshamar polyhedron, respectively. The structure is not isotypic with the recently reported naturally occurring form of Tl3BiCl6, the mineral steropesite. Compound 2 is obtained from a dark red melt of composition TlCl + 2 BiCl3. On rapid cooling, this melt solidifies to a metastable dark red glass which at ambient temperature crystallises to a light amber crystalline powder within some weeks. The structure of 2 was determined by powder diffraction (triclinic, P\bar{1} ). A distinct lone pair effect is present causing an irregular coordination on the two independent bismuth atoms. Taking Bi–Cl bonds up to 3.5 Å into account, both bismuth atoms gain coordination number seven. 203Tl and 205Tl solid state NMR and XANES spectra on the Bi and Tl‐LIII edges of both glassy and crystalline TlBi2Cl7 show that a close structural similarity exists between both forms. In contrast, the Raman spectra show distinct differences in the bands of the Bi–Cl vibrations region.  相似文献   

8.
Gaseous Complexes NiAl2Cl8 and NiAl3Cl11 Spectral photometric measurements of equilibria which are established by reaction of solid NiCl2 with gaseous Al2Cl6 have been made. Results see ?Inhaltsübersicht”?.  相似文献   

9.
Compounds of Silicon. 140. Sterical Overloaded Compounds of Silicon. 24. Disupersilylsilanes R*2SiX2, Disupersilyldisilanes R*2XSi–SiX3, and Tetrasupersilyltetrasilanes R*2XSi–SiX2–SiX2–SiXR*2 Supersilylsilanes R*2SiX2, disupersilyldisilanes R*2XSi–SiX3 and tetrasupersilyltetrasilanes R*2XSi–SiX2–SiX2–SiXR*2 (R* = supersilyl = SitBu3; X = H, Me, Ph, Hal, OH, OTf) are prepared in organic solvents (i) by reactions of supersilylhalosilanes R*X2SiHal with supersilyl sodium NaR* (Hal/R* exchange), (ii) by reactions of halosilanes X3SiHal with silanides NaSiXR*2 (Hal/SiXR*2 exchange), (iii) by dehalogenations of disupersilylhalodisilanes R*2XSi–SiX2Hal with Na, (iv) by insertions of supersilylsilylenes R*XSi into the NaSi‐bond of supersilylsodium NaR*, (v) by reactions of disupersilylated halosilanes and ‐disilanes R*2XSiHal and R*2XSi–SiX2Hal with H (Hal/H exchange), (vi) by reactions of the title silanes (X = H) with halogens Hal2 (H/Hal exchange), (vii) by reactions of the title silanes (X = Hal) first with Na (Hal/Na exchange), then with agents for protonation (Na/H exchange) or halogenation (Na/Hal exchange), (viii) by reactions of the title silanes (X = Hal) with nucleophiles like F, H2O (Hal/F or Hal/OH exchange) or (ix) by reactions of the title silanes (X = H) with strong acids like HOTf (H/OTf exchange). The colorless compounds are characterized by IR, NMR and X‐ray structure analyses (structures of R*2SiX2 with X = H, F, Cl and R*2HSi–SiHX–SiHX–SiHR*2 with X = H, Br). They may thermolize under formation of silylenes (e. g. R*2SiX2 → R*X + R*SiX) and are normally stable for hydrolysis. For other reactions confer preparation of the title silanes (i–ix).  相似文献   

10.
11.
Tl4Pd3Cl10 – A Compound with a New [(PdCl2Cl2/2)4]4– Group Single crystals of Tl4Pd3Cl10 can be obtained by hydrothermal synthesis. They show tetragonal symmetry with lattice parameters a = 15.956(1) Å and c = 14.146(1) Å, Z = 8 and space group I42d (No. 122). The atomic arrangement of Tl4Pd3Cl10 is explored by X‐ray crystal structure analysis. Tl4Pd3Cl10 is the first example of a new structural type with a hitherto not isolated tetramer [(PdCl2Cl2/2)4]4– group.  相似文献   

12.
High Resolution Electron Microscopy Investigations of La2CeTaO6Cl3 and its Thermal Decomposition Product La2Ce Ce TaO6Cl3?x The thermal decomposition of the hexagonal La2CeTaO6Cl3 led to a mixed-valent product La2CeCe TaO6Cl3?x with a complicated monoclinic structure. The detailed inspection shows two subunits A and B, which form the monoclinic unit cell by a ABAB sequence. The subunit A is almost identical to the hexagonal cell of the starting material while subunit B has additional Ln- and Cl-positions. For this reason, the main structure features of the monoclinic compound and the starting material are related, which is clearly seen in the electron microscopy investigations. As might be expected from the relationship between the subunits A and B one can observe defects in the monoclinic compound arising from the various possibilities of combining these building elements. We also found structure defects in the hexagonal starting material, which are caused by the presence of the subunit B.  相似文献   

13.
Synthesis and Structure of Pentaalkylchlorohexastibane Sb6R5Cl [R = (Me3Si)2CH] The reaction of RSbCl2 [R = (Me3Si)2CH] with Na‐K alloy in tetrahydrofuran gives besides the known rings SbnRn (n = 3, 4), (Me3Si)2CH2 and the pentaalkylchlorohexastibane Sb6R5Cl ( 1 ). 1 was characterized by spectroscopic methods (MS, 1H‐, 13C‐NMR, X‐ray diffraction). The structure of 1 consists of a folded four membered antimony ring in the all‐trans configuration with three alkyl groups and one Sb(R)—Sb(R)Cl fragment as substituents.  相似文献   

14.
The disilene R*PhSi=SiPhR* (R* = supersilyl = SitBu3), which can be quantitatively prepared by dehalogenation of the disilane R*PhClSi-SiBrPhR* with NaR* (yellow, water- and air-sensitive crystals; decomp at ca. 70 degrees C; Si=Si distance 2.182 A), is comparatively reactive. It transforms 1) with Cl2, Br2, HCl, HBr, and HOH under 1,2-addition into disilanes R*PhXSi-SiX'PhR* (X/X' = Hal/Hal, H/Hal, H/OH), 2) with O2, S8, and Sen under insertion into 1,3-disiletanes R*PhSi(-Y-)2SiPhR* (Y = O, S, Se), 3) with Me2C=CH2 under ene reaction into the disilane R*PhRSi-SiHPhR* (R = CH2-CMe=CH2), 4) with N2O, Ten, tBuN identical to C, and Me3SiN=N=N under [2 + 1] cycloaddition into disiliranes -R*PhSi-Y-SiPhR*- (Y = O, Te, C=NtBu, NSiMe3; P4 adds 2 molecules of disilene), 5) with CO2, COS, PhCHO, and Ph2CS under [2 + 2] cycloaddition into disiletanes -R*PhSi-SiPhR*-Y-CO- (Y = O, S) as well as -R*PhSi-SiPhR*-Y-CRPh- (Y/R = O/H, S/Ph), 6) with CS2 and CSe2 under [2 + 3] cycloaddition into ethenes R*2Ph2Si2Y2C = CY2Si2Ph2R*2 (Y = S, Se), and 7) with CH2 = CMe-CMe=CH2 and Ph2CO under [2 + 4] cycloaddition into "Diels-Alder adducts". X-ray structure analyses of seven of these compounds are presented.  相似文献   

15.
The luminescence properties of La3TaO4Cl6 are reported and discussed. The rare earth ions Sm3+, Eu3+, Tb3+, Dy3+, and Tm3+ show characteristic absorption and emission lines. For Sm3+ and Eu3+, broad absorption bands are also observed and are attributed to charge-transfer transitions. The line emissions of Tb3+ are only from 5D4, even at low (1 at.%) concentration. Broad excitation and emission bands were observed with In3+. These bands are attributed to In3+Ta5+ → In4+Ta4+ charge-transfer transitions. An additional broad absorption at 250 and 280 nm leading to broad emission at 410 nm is ascribed to OH impurities.  相似文献   

16.
The 2,2,2-crypt salts of the Tl4Se8(4-) and [Tl2Se4(2-)]infinity1 anions have been obtained by extraction of the ternary alloy NaTl0.5Se in ethylenediamine (en) in the presence of 2,2,2-crypt and 18-crown-6 followed by vapor-phase diffusion of THF into the en extract. The [2,2,2-crypt-Na]4[Tl4Se8].en crystallizes in the monoclinic space group P2(1)/n, with Z = 2 and a = 14.768(3) angstroms, b = 16.635(3) angstroms, c = 21.254(4) angstroms, beta = 94.17(3) degrees at -123 degrees C, and the [2,2,2-crypt-Na]2[Tl2Se4]infinity1.en crystallizes in the monoclinic space group P2(1)/c, with Z = 4 and a = 14.246(2) angstroms, b = 14.360(3) angstroms, c = 26.673(8) angstroms, beta = 99.87(3) degrees at -123 degrees C. The TlIII anions, Tl2Se6(6-) and Tl3Se7(5-), and the mixed oxidation state TlI/TlIII anion, Tl3Se6(5-), have been obtained by extraction of NaTl0.5Se and NaTlSe in en, in the presence of 2,2,2-crypt and/or in liquid NH3, and have been characterized in solution by low-temperature 77Se, 203Tl, and 205Tl NMR spectroscopy. The 1J(203,205Tl-77Se) and 2J(203,205Tl-203,205Tl) couplings of the three anions have been used to arrive at their solution structures by detailed analyses and simulations of all spin multiplets that comprise the 205,203Tl NMR subspectra arising from natural abundance 205,203Tl and 77Se isotopomer distributions. The structure of Tl2Se6(6-) is based on a Tl2Se2 ring in which each thallium is bonded to two exo-selenium atoms so that these thalliums are four-coordinate and possess a formal oxidation state of +3. The Tl4Se8(4-) anion is formally derived from the Tl2Se6(6-) anion by coordination of each pair of terminal Se atoms to the TlIII atom of a TlSe+ cation. The structure of the [Tl2Se4(2-)]infinity1 anion is comprised of edge-sharing distorted TlSe4 tetrahedra that form infinite, one-dimensional [Tl2Se42-]infinity1 chains. The structures of Tl3Se6(5-) and Tl3Se7(5-) are derived from Tl4Se4-cubes in which one thallium atom has been removed and two and three exo-selenium atoms are bonded to thallium atoms, respectively, so that each is four-coordinate and possesses a formal oxidation state of +3 with the remaining three-coordinate thallium atom in the +1 oxidation state. Quantum mechanical calculations at the MP2 level of theory show that the Tl2Se6(6-), Tl3Se6(5-), Tl3Se7(5-), and Tl4Se8(4-) anions exhibit true minima and display geometries that are in agreement with their experimental structures. Natural bond orbital and electron localization function analyses were utilized in describing the bonding in the present and previously published Tl/Se anions, and showed that the Tl2Se6(6-), Tl3Se6(5-), Tl3Se7(5-), and Tl4Se8(4-) anions are electron-precise rings and cages.  相似文献   

17.
Bromosulfenyl(trihalogeno)phosphonium Salts Cl3?nBrnPSBr+AsF6? (n = 0 – 3) and Cl3PSBr+SbF6? — Oxidative Bromination of Thiophosphorylhalides The bromosulfenyl(trihalogeno)phosphonium salts Cl3?nBrnPSBr+AsF6? (n = 0 – 3) and Cl3PSBr+SbF6? are prepared by oxidative bromination of the corresponding thiophosphorylhalides with Br2/MF5 (M = As, Sb) and characterized by vibrational and NMR spectroscopy.  相似文献   

18.
Mass Spectra of Pd6Cl12, Pt6Cl12, and PdnPt6?nCl12 Pd6Cl12, and Pt6Cl12 and both together are volatilised in a mass spectrometer. 3 Cl and 1 Pd have approximately the same mass, therefore isotopes of Pd and Pt are used (108Pd, 194Pt). With an ionisation energy of 50 eV part of the vapourised molecules is strongly fragmented. With a lower ionisation energy the molecule ions Pd6Cl12+, Pt6Cl12+ and PdnPt6?nCl12+ are only observed.  相似文献   

19.
20.
Synthesis and Chirality of (5R, 6R)-5,6-Dihydro-β, ψ-carotene-5,6-diol, (5R, 6R, 6′R)-5,6-Dihydro-β, ε-carotene-5,6-diol, (5S, 6R)-5,6-Epoxy-5,6-dihydro-β,ψ-carotene and (5S, 6R, 6′R)-5,6-Epoxy-5,6-dihydro-β,ε-carotene Wittig-condensation of optically active azafrinal ( 1 ) with the phosphoranes 3 and 6 derived from all-(E)-ψ-ionol ( 2 ) and (+)-(R)-α-ionol ( 5 ) leads to the crystalline and optically active carotenoid diols 4 and 7 , respectively. The latter behave much more like carotene hydrocarbons despite the presence of two hydroxylfunctions. Conversion to the optically active epoxides 8 and 9 , respectively, is smoothly achieved by reaction with the sulfurane reagent of Martin [3]. These syntheses establish the absolute configurations of the title compounds since that of azafrin is known [2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号