首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis, Structure, and Properties of [nacnac]MX3 Compounds (M = Ge, Sn; X = Cl, Br, I) Reactions of [nacnac]Li [(2,6‐iPr2C6H3)NC(Me)C(H)C(Me)N(2,6‐iPr2C6H3)]Li ( 1 ) with SnX4 (X = Cl, Br, I) and GeCl4 in Et2O resulted in metallacyclic compounds with different structural moieties. In the [nacnac]SnX3 compounds (X = Cl 2 , Br 3 , I 4 ) the tin atom is five coordinated and part of a six‐membered ring. The Sn–N‐bond length of 3 is 2.163(4) Å and 2.176(5) Å of 4 . The five coordinated germanium of the [nacnac]GeCl3 compound 5 shows in addition to the three chlorine atoms further bonds to a carbon and to a nitrogen atom. In contrast to the known compounds with the [nacnac] ligand the afore mentioned reaction creates a carbon–metal‐bond (1.971(3) Å) forming a four‐membered ring. The Ge–N bond length (2.419(2) Å) indicates the formation of a weakly coordinating bond.  相似文献   

2.
Insertion and Substitution Reaction of Methyl Formate with [Cp′2ZrCl(PHTipp)] – Molecular Structure of meso‐trans ‐[Cp′2ZrCl{OCH(PHTipp)2}] (Cp′ = η5‐C5MeH4, Tipp = 2,4,6‐Pri3C6H2) [Cp′2ZrCl(PHTipp)] ( 1 ) (Cp′ = η5‐C5MeH4, Tipp = 2,4,6‐Pri3C6H2) reacts with methyl formate with insertion and substitution to give [Cp′2ZrCl{OCH(PHTipp)2}] ( 2 ). 2 was characterized spectroscopically (1H, 31P NMR, IR, MS) and by X‐ray structure determination. Only the meso‐trans isomer is present in the solid state.  相似文献   

3.
The complexes [Ag(η2‐N∧S)2](PF6), N∧S = 1‐methyl‐2‐(methylthiomethyl)‐1H‐benzimidazole, mmb (complex 1 ) or 1‐methyl‐2‐(tert‐butylthiomethyl)‐1H‐benzimidazole, mtb (complex 2 ), and [Ag(μ,η2‐mmb)(μ,η2‐O2PF2)] (complex 3 ) were synthesized and characterized by X‐ray crystallography. Long Ag–S (ca. 2.70 Å) and shorter Ag–N bonds (ca. 2.23 Å) are part of characteristically distorted tetrahedral coordination arrangements at the silver(I) ions in 1 and 2 . Unexpectedly, the comparison with the copper analogue [Cu(η2‐mmb)2](PF6) reveals a more tetrahedral and less linear coordination arrangement for the corresponding silver species. Compound 3 as obtained by hydrolysis of the PF6 ion or by the use of AgPO2F2 exhibits bridging mmb and η2‐difluorophosphate ligands in a chain‐type structure.  相似文献   

4.
Treating [Cp*V(μ‐Cl)2]3 (Cp* = C5Me5) and [(2,6‐i‐Pr2C6H3N)2MoMe2], respectively, with Me3SnF afforded the title compounds [Cp*V(μ‐F)2]4 ( 1 ) and [(2,6‐i‐Pr2C6H3N)2MoF2] · THF ( 2 ). 1 has a tetrameric structure, in which four V atoms can be regarded as being arranged at the vertices of a distorted tetrahedron, with four long edges bridged by one F atom and each of the other two short edges bridged by two F atoms with a mean V–F bond length of 2.00 Å. A hydrolyzed product of 2 , [(2,6‐i‐Pr2C6H3N)6Mo43‐F)2Me2(μ‐O)4] ( 3 ) was characterized by elemental analyses and X‐ray single crystal study. The X‐ray diffraction analysis reveals that 3 has a unique tetranuclear structure, containing two five and two six coordinated Mo atoms connecting each other by four μ‐O and two μ3‐F atoms. The geometries around the two Mo atoms can be described having distorted trigonal bipyramidal and distorted octahedral coordination spheres, respectively. The Mo–(μ‐O) bond lengths are 1.813 Å (average) for five coordinated Mo atoms and 2.030 Å (average) for those of six coordinated, respectively, indicating an additional π bonding between five coordinated Mo atoms and the μ‐O atoms. The Mo–(μ3‐F) distances range from 2.291 to 2.352 Å.  相似文献   

5.
Three‐ and five‐membered rings that bear the (Si‐C‐S ) and (Si‐C‐C‐C‐S ) unit have been synthesized by the reactions of L SiCl ( 1 ; L =PhC(NtBu)2) and L′ Si ( 2 ; L′ =CH{(C?CH2)(CMe)(2,6‐iPr2C6H3N)2}) with the thioketone 4,4′‐bis(dimethylamino)thiobenzophenone. Treatment of 4,4′‐bis(dimethylamino)thiobenzophenone with L SiCl at room temperature furnished the [1+2]‐cycloaddition product silathiacyclopropane 3 . However, reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si at low temperature afforded a [1+4]‐cycloaddition to yield the five‐membered ring product 4 . Compounds 3 and 4 were characterized by NMR spectroscopy, EIMS, and elemental analysis. The molecular structures of 3 and 4 were unambiguously established by single‐crystal X‐ray structural analysis. The room‐temperature reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si resulted in products 4 and 5 , in which 4 is the dearomatized product and 5 is formed under the 1,3‐migration of a hydrogen atom from the aromatic phenyl ring to the carbon atom of the C? S unit. Furthermore, the optimized structures of probable products were investigated by using DFT calculations.  相似文献   

6.
Syntheses of Compounds with M–N Bonds (M = Li, Ga, In) The adducts [GaCl3(HNiPr2)] ( 1 ) and [InCl3{HN(CH2Ph)2}2] ( 2 ) can be obtained by the reactions of the corresponding metal(III) halides with the amines. The In amide In(NcHex2)3 ( 3 ) can be formed by treatment of InCl3 with three equivalents of LiNcHex2. Reaction with four equivalents of LiNcHex2 leads to the same product. However, the treatment of InCl3 with four equivalents of LiN(CH2Ph)2 gives the desired metalate [Li(THF)4][In{N(CH2Ph)2}4] ( 4 ). From the corresponding reaction of InCl3 with LiNiPr2 no In‐containing product could be identified. Instead, the aggregate of LiCl with three units of LiNiPr2, [Li4(NiPr2)3(THF)4Cl] ( 5 ), was isolated. 1 – 4 were characterized by NMR, IR and MS techniques as well as by X‐ray structure determinations. According to them, 1 possesses a tetrahedrally coordinated Ga atom, at which two units of 1 are connected by hydrogen bridges to centrosymmetrical dimers. The In atoms in 2 have a trigonal‐bipyramidal coordination sphere; the amine molecules occupy the apical positions. The central metal atom in 3 and the anion of 4 exhibit trigonal‐planar and distorted tetrahedral environments, respectively. The novel structural motif in 5 is the Cl ion, only partly surrounded by Li+ ions in a strongly distorted trigonal‐bipyramidal fashion. The dominating angle amounts to 165.2(2)°.  相似文献   

7.
Tungsten and molybdenum complexes [M(CO)2(dpphen)(dbf)2] (M = W 1 or Mo 2 ; dpphen = 4,7‐diphenyl‐1,10‐phenanthroline; dbf = dibutylfumarate) have been synthesized and structurally characterized by X‐ray diffraction analysis. In both complexes which have similar structure, the metal atom co‐ordination is distorted octahedral with dpphen and two CO groups in the equatorial plane and the metal atom binds in an η2‐fashion to the C–C bonds of two dbf ligands. The two C–C bonds are almost mutually orthogonal. The two complexes are different in conformation which result from face selection of the two dbf ligands for coordination to the metal atom.  相似文献   

8.
Facile oxygenation of the acyclic amido‐chlorosilylene bis(N‐heterocyclic carbene) Ni0 complex [{N(Dipp)(SiMe3)ClSi:→Ni(NHC)2] ( 1 ; Dipp=2,6‐iPr2C6H4; N‐heterocyclic carbene=C[(iPr)NC(Me)]2) with N2O furnishes the first Si‐metalated iminosilane, [DippN=Si(OSiMe3)Ni(Cl)(NHC)2] ( 3 ), in a rearrangement cascade. Markedly, the formation of 3 proceeds via the silanone (Si=O)–Ni π‐complex 2 as the initial product, which was predicted by DFT calculations and observed spectroscopically. The Si=O and Si=N moieties in 2 and 3 , respectively, show remarkable hydroboration reactivity towards H−B bonds of boranes, in the former case corroborating the proposed formation of a (Si=O)–Ni π‐complex at low temperature.  相似文献   

9.
合成了两个新的配合物CuLCl2•2EtOH(1) 和CoLCl2 (2) [L是( S , S )-1,2-二N-甲基苯并咪唑-1,2-二甲氧基-乙烷],并通过单晶X衍射确定它们的结构。配合物1中,L作为三齿[N, N, O]配体,而配合物2 中,L作为二齿[N, N]配体。这两个配合物共同的结构特点都是通过分子内氢键形成2维的格子结构,然后通过分子间的C-H···Cl型氢键和π–π堆积作用形成3维结构。  相似文献   

10.
Polysulfonylamines. CXVI. Destructive Complexation of the Dimeric Diorganyltin(IV) Hydroxide [Me2Sn(A)(μ‐OH)]2 (HA = Benzene‐1,2‐disulfonimide): Formation and Structures of the Mononuclear Complexes [Me2Sn(A)2(OPPh3)2] and [Me2Sn(phen)2]2⊕ · 2 A · MeCN Destructive complexation of the dimeric hydroxide [Me2Sn(A)(μ‐OH)]2, where A is deprotonated benzene‐1,2‐disulfonimide, with two equivalents of triphenylphosphine oxide or 1,10‐phenanthroline in hot MeCN produced, along with Me2SnO and water, the novel coordination compounds [Me2Sn(A)2(OPPh3)2] ( 3 , triclinic, space group P 1) and [Me2Sn(phen)2]2⊕ · 2 A · MeCN ( 4 , monoclinic, P21/c). In the uncharged all‐trans octahedral complex 3 , the heteroligands are unidentally O‐bonded to the tin atom, which resides on a crystallographic centre of inversion [Sn–O(S) 227.4(2), Sn–O(P) 219.6(2) pm, cis‐angles in the range 87–93°; anionic ligand partially disordered over two equally populated sites for N, two S and non‐coordinating O atoms]. The cation occurring in the crystal of 4 has a severely distorted cis‐octahedral C2N4 coordination geometry around tin and represents the first authenticated example of a dicationic tin(IV) dichelate [R2Sn(L–L′)2]2⊕ to adopt a cis‐structure [C–Sn–C 108.44(11)°]. The five‐membered chelate rings are nearly planar, with similar bite angles of the bidentate ligands, but unsymmetric Sn–N bond lengths, each of the longer bonds being trans to a methyl group [ring 1: N–Sn–N 71.24(7)°, Sn–N 226.81(19) and 237.5(2) pm; ring 2: 71.63(7)°, 228.0(2) and 232.20(19) pm]. In both structures, the bicyclic and effectively CS symmetric A ions have their five‐membered rings distorted into an envelope conformation, with N atoms displaced by 28–43 pm from the corresponding C6S2 mean plane.  相似文献   

11.
The reaction of [(ArN)2MoCl2] · DME (Ar = 2,6‐i‐Pr2C6H3) ( 1 ) with lithium amidinates or guanidinates resulted in molybdenum(VI) complexes [(ArN)2MoCl{N(R1)C(R2)N(R1)}] (R1 = Cy (cyclohexyl), R2 = Me ( 2 ); R1 = Cy, R2 = N(i‐Pr)2 ( 3 ); R1 = Cy, R2 = N(SiMe3)2 ( 4 ); R1 = SiMe3, R2 = C6H5 ( 5 )) with five coordinated molybdenum atoms. Methylation of these compounds was exemplified by the reactions of 2 and 3 with MeLi affording the corresponding methylates [(ArN)2MoMe{N(R1)C(R2)N(R1)}] (R1 = Cy, R2 = Me ( 6 ); R1 = Cy, R2 = N(i‐Pr)2 ( 7 )). The analogous reaction of 1 with bulky [N(SiMe3)C(C6H5)C(SiMe3)2]Li · THF did not give the corresponding metathesis product, but a Schiff base adduct [(ArN)2MoCl2] · [NH=C(C6H5)CH(SiMe3)2] ( 8 ) in low yield. The molecular structures of 7 and 8 are established by the X‐ray single crystal structural analysis.  相似文献   

12.
The title compound, [Zn3(C9H21SiS)6] or [(iPr3SiS)Zn(μ‐SSiiPr3)2Zn(μ‐SSiiPr3)2Zn(SSiiPr3)], is the first structurally characterized homoleptic silanethiolate complex of zinc. A near‐linear arrangement of three ZnII ions is observed, the metals at the ends being three‐coordinate with one terminally bound silanethiolate ligand. The central ZnII ion is four‐coordinate and tetrahedral, with two bridging silanethiolate ligands joining it to each of the two peripheral ZnII ions. The nonbonding intermetallic distances are 3.1344 (11) and 3.2288 (12) Å, while the Zn...Zn...Zn angle is 172.34 (2)°. A trimetallic silanethiolate species of this type has not been previously identified by X‐ray crystallography for any element.  相似文献   

13.
The migratory insertions of cis or trans olefins CH(X)?CH(Me) (X = Ph, Br, or Et) into the metal–acyl bond of the complex [Pd(Me)(CO)(iPr2dab)]+ [B{3,5‐(CF3)2C6H3}4]? ( 1 ) (iPr2dab = 1,4‐diisopropyl‐1,4‐diazabuta‐1,3‐diene = N,N′‐(ethane‐1,2‐diylidene)bis[1‐methylethanamine]) are described (Scheme 1). The resulting five‐membered palladacycles were characterized by NMR spectroscopy and X‐ray analysis. Experimental data reveal some important aspects concerning the regio‐ and stereochemistry of the insertion process. In particular, the presence of a Ph or Br substituent at the alkene leads to the formation of highly regiospecific products. Moreover, in all cases, the geometry of the substituents in the formed palladacycle was the same as in the starting olefin, as a consequence of a cis addition of the Pd–acyl fragment to the C?C bond. Reaction with CO and MeOH of the five‐membered complex derived from trans‐β‐methylstyrene (= [(1E)‐prop‐1‐enyl]benzene) insertion, yielded the 2,3‐substituted γ‐keto ester 9 with an (2RS,3SR)‐configuration (Scheme 3).  相似文献   

14.
The reaction of 2,4‐diferrocenyl‐1,3‐dithiadiphosphetane 2,4‐disulfide [FcPS(μ‐S)]2 [Fc = Fe(η5‐C5H4)(η5‐C5H5)] with alcohols ROH gave the corresponding ferrocenyldithiophosphonic acids [FcPS(OR)(SH)], which were treated in situ with Ni(CH3COO)2·4H2O in acetic acid to yield the square‐planar heterobimetallic trinuclear complexes [{FcP(OR)S2}2Ni] (R = Me ( 1 ), Et ( 2 ), Pri ( 3 ), Bus ( 4 ) and Bui ( 5 )). Compounds 1‐5 were characterized by elemental analysis, MS, NMR (1H, 13C and 31P), IR spectroscopy, and 2‐5 also by X‐ray crystallography. Cyclovoltammetric studies on the heterobimetallic nickel(II) complexes 1‐5 showed irreversible reduction to unstable nickel(I) complexes and an irreversible two‐electron oxidation of the sulfur‐containing nickel fragments, followed by a reversible one‐electron oxidation of the two ferrocenyl groups.  相似文献   

15.
Preparation, Characterisation, and Crystal Structures of the Pseudohalogen Crown Ether Complexes [K([18]crown‐6)(X)(OPPh3)] (X = N3, OCN and SCN) The potassium crown ether complexes [K([18]Crown‐6)(X)(OPPh3)] (with X = N3, OCN and SCN) can be obtained by reaction of KX with 18‐crown‐6 (1, 4, 7, 10, 13, 16‐hexaoxacyclooctadecane and triphenylphosphane in THF exposed to UV light. All crown ether complexes were characterized by means of vibrational spectroscopy and X‐ray diffraction. They crystallize in the rhombic pointgroup R3m with three molecules in the unit cell: [K([18]crown‐6) (N3)(OPPh3)] ( 1 ): lattice constants at 293 K: a = b = 14.213(2) Å; c = 13.951(2) Å; R1 = 0.0249. [K([18]crown‐6)(OCN)(OPPh3)] ( 2 ): a = b = 14.239(2) Å; c = 13.8927(14) Å; R1 = 0.0257. [K([18]crown‐6)(NCS)(OPPh3)] ( 3 ): a = b = 14.339(2) Å; c = 14.266(2) Å; R1 = 0.0264.  相似文献   

16.
The crystal structures of uncharged tetrahedral dithiocyanato zinc complexes with N-methylated ethylenediamines have been determined with a view to a study of intermolecular hydrogen-bonding interactions in these compounds. It is found that the H(N) hydrogen atoms are exhaustively engaged in N–H(N) … S bonds. The majority of these bonds are branched (bifurcated or trifurcated), and the hydrogen-bond systems they form all contain one of the two characteristic primitive core motifs: either a discrete centrosymmetric […S…H…]2 dimer or an infinite […S…H…] helix about a 21 or pseudo-21 axis. The hydrogen bonding is analyzed in detail, with particular attention to the existence of correlations between the N–H(N)–S angles and the H(N) … S distances as well as between the corresponding N–H(N)–S/H(N)…S pairs in the bifurcated N–H(N)…2 S bonds.  相似文献   

17.
The tetradentate N2S2 Schiff base ligand 3,3′‐[2,2′‐(ethyl­ene­di­oxy)di­benzyl­idene]­bis­(S‐methyl di­thio­car­ba­zate) (H2L), prepared by the condensation of S‐methyl di­thio­carb­aza­te with 1,4‐bis(2‐formyl­phenyl)‐1,4‐dioxa­butane in a 1:2 molar ratio, reacts with nickel acetate to form the title neutral metal complex, [Ni(C20H20N4O2S4)]. The X‐ray structure of the complex shows a distorted square‐planar geometry around the Ni atom. The monomeric units are weakly associated into dimers via a long Ni?S interaction [3.569 (1) Å]. These dimeric units are then linked by C—H?S intermolecular contacts to form a polymeric chain along the a axis.  相似文献   

18.
The synthesis and characterization of three new dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐Chlorophenyl)‐1‐hexyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C28H30ClN3O2S2, (I), (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐1‐benzyl‐5‐methyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C30H26ClN3O2S2, (II), and (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐5‐fluoro‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one‐pot reaction involving l ‐proline, a substituted isatin and (Z)‐5‐(4‐chlorobenzylidene)‐2‐sulfanylidenethiazolidin‐4‐one [5‐(4‐chlorobenzylidene)rhodanine]. The compositions of (I)–(III) were established by elemental analysis, complemented by high‐resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single‐crystal X‐ray structure analysis. A possible reaction mechanism for the formation of (I)–(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N—H…N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N—H…O and C—H…S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N—H…N and N—H…S=C hydrogen bonds.  相似文献   

19.
The synthesis and characterization of a singlet delocalized 2,4‐diimino‐1,3‐disilacyclobutanediyl, [LSi(μ‐CNAr)2SiL] ( 2 , L: PhC(NtBu)2, Ar: 2,6‐iPr2C6H3), and a silylenylsilaimine, [LSi(?NAr)? SiL] ( 3 ), are described. The reaction of three equivalents of the disilylene [LSi? SiL] ( 1 ) with two equivalents of ArN?C?NAr in toluene at room temperature for 12 h afforded [LSi(μ‐CNAr)2SiL] ( 2 ) and [LSi(?NAr)? SiL] ( 3 ) in a ratio of 1:2. Compounds 2 and 3 have been characterized by NMR spectroscopy and X‐ray crystallography. Compound 2 was also investigated by theoretical studies. The results show that compound 2 possesses singlet biradicaloid character with an extensive electronic delocalization throughout the Si2C2 four‐membered ring and exocyclic C?N bonds. Compound 3 is the first example of a silylenylsilaimine, which contains a low‐valent silicon center and a silaimine substituent. A mechanism for the formation of 2 and 3 is also proposed.  相似文献   

20.
Phosphino derivatives of serine R2P–CH2–CH(NHBOC)(COOMe) ( 2 a – 2 d ) have been obtained in high yield by nucleophilic phosphination of N‐(tert.butoxycarbonyl)‐3‐iodo‐L‐alanine methylester with secondary phosphines R2PH (R = Ph, 2‐tolyl, 3,5‐xylyl, cyclohexyl) in DMF using potassium carbonate as the base. Deprotection of 2 b with HCl affords the amino acid ester hydrochloride [2‐Tol2P–CH2–CH(NH3)(COOMe)]+Cl ( 3 a ). The X‐ray structures of 2 a (space group P21/n) and 2 c (space group P 1) have been determined. The two enantiomers of 2 a or 2 c are interconnected by N–H…O hydrogen bridges forming dimers in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号