首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developing Couette–Poiseuille flows at Re=5000 are studied using a low Reynolds number k–ϵ two‐equation model and a finite element formulation. Mesh‐independent solutions are obtained using a standard Galerkin formulation and a Galerkin/least‐squares stabilized method. The predictions for the velocity and turbulent kinetic energy are compared with available experimental results and to the DNS data. Second moment closure's solutions are also compared with those of the k–ϵ model. The deficiency of eddy viscosity models to predict dissymmetric low Reynolds number channel flows has been demonstrated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
This paper describes a finite element implementation of an operator-splitting algorithm for solving transient/steady turbulent flows and presents solutions for the turbulent flow in an axisymmetric 180° narrowing bend, a benchmark problem dealt with at the 1994 WUA-CFD annual meeting. Three k–ϵ based models are used: the standard linear k–ϵ model, a non-linear k–ϵ model and an RNG k–ϵ model. Flow separation after the bend, as observed in the experiment, is predicted by the RNG model and by both the linear and non-linear k–ϵε models with van Driest mixing length wall functions. Good agreement with experimental data of pressure distribution on bending walls is obtained by the present numerical simulation. Results show that there is very little difference between the linear and non-linear k–ϵε models in terms of predicted velocity fields and that the non-linearities mainly affect the distribution of turbulent normal stress and pressure, in analogy to the effect of second-order viscoelastic fluid models on laminar flow. Both the linear and non-linear k–ϵε models fail to predict any flow separation if logarithmic wall functions are used.  相似文献   

3.
Details are given of a study to obtain experimental data in an idealized environment for the purpose of evaluating the corresponding computational predictions and which supplement parallel measurements made in actual packaged air-conditioning units. The system consisted of a purpose-built low-speed wind tunnel with a working section constructed to reproduce particular features of the real units. In the experiment, both the mean velocity profiles and turbulence properties of the flow are obtained from triple-hot-wire anemometry measurements. A numerical model, based on finite volume methodology, was used to obtain the solution of the Reynolds-averaged Navier–Stokes equations for incompressible isothermal flow. The Reynolds stress terms in the equations are calculated using the standard k–ϵ model and second-moment closure (Reynolds stress) models. The accuracy of the two models was evaluated against the experimental measurements made 10 mm downstream of a baffle. The results show that the standard k–ϵ model gave the better agreement except in regions of strong recirculation. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
5.
This paper presents a finite difference technique for solving incompressible turbulent free surface fluid flow problems. The closure of the time‐averaged Navier–Stokes equations is achieved by using the two‐equation eddy‐viscosity model: the high‐Reynolds k–ε (standard) model, with a time scale proposed by Durbin; and a low‐Reynolds number form of the standard k–ε model, similar to that proposed by Yang and Shih. In order to achieve an accurate discretization of the non‐linear terms, a second/third‐order upwinding technique is adopted. The computational method is validated by applying it to the flat plate boundary layer problem and to impinging jet flows. The method is then applied to a turbulent planar jet flow beneath and parallel to a free surface. Computations show that the high‐Reynolds k–ε model yields favourable predictions both of the zero‐pressure‐gradient turbulent boundary layer on a flat plate and jet impingement flows. However, the results using the low‐Reynolds number form of the k–ε model are somewhat unsatisfactory. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
This first segment of the two‐part paper systematically examines several turbulence models in the context of three flows, namely a simple flat‐plate turbulent boundary layer, an axisymmetric separating flow, and a swirling flow. The test cases are chosen on the basis of availability of high‐quality and detailed experimental data. The tested turbulence models are integrated to solid surfaces and consist of: Rodi's two‐layer kε model, Chien's low‐Reynolds number kε model, Wilcox's kω model, Menter's two‐equation shear‐stress‐transport model, and the one‐equation model of Spalart and Allmaras. The objective of the study is to establish the prediction accuracy of these turbulence models with respect to axisymmetric separating flows, and flows of high streamline curvature. At the same time, the study establishes the minimum spatial resolution requirements for each of these turbulence closures, and identifies the proper low‐Mach‐number preconditioning and artificial diffusion settings of a Reynolds‐averaged Navier–Stokes algorithm for optimum rate of convergence and minimum adverse impact on prediction accuracy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents an adaptive finite element method for solving incompressible turbulent flows using a k–ϵ model of turbulence. Solutions are obtained in primitive variables using a highly accurate quadratic finite element on unstructured grids. A projection error estimator is presented that takes into account the relative importance of the errors in velocity, pressure and turbulence variables. The efficiency and convergence rate of the methodology are evaluated by solving problems with known analytical solutions. The method is then applied to turbulent flow over a backward-facing step and predictions are compared with experimental measurements. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
A numerical method for the efficient calculation of three‐dimensional incompressible turbulent flow in curvilinear co‐ordinates is presented. The mathematical model consists of the Reynolds averaged Navier–Stokes equations and the k–ε turbulence model. The numerical method is based on the SIMPLE pressure‐correction algorithm with finite volume discretization in curvilinear co‐ordinates. To accelerate the convergence of the solution method a full approximation scheme‐full multigrid (FAS‐FMG) method is utilized. The solution of the k–ε transport equations is embedded in the multigrid iteration. The improved convergence characteristic of the multigrid method is demonstrated by means of several calculations of three‐dimensional flow cases. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
The present study is concerned with simulating turbulent, strongly swirling flows by eddy viscosity model and Reynolds stress transport model variants adopting linear and quadratic form of the pressure–strain models. Flows with different inlet swirl numbers, 2.25 and 0.85, were investigated. Detailed comparisons of the predicted results and measurements were presented to assess the merits of model variants. For the swirl number 2.25 case, due to the inherent capability of the Reynolds stress models to capture the strong swirl and turbulence interaction, both the linear and quadratic form of the pressure–strain models predict the flow adequately. In strong contrast, the k–ϵ model predicts an excessively diffusive flow fields. For the swirl number 0.85 case, both the k–ϵ and Reynolds stress model with linear pressure–strain process, show an excessive diffusive transport of the flow fields. The quadratic pressure–strain model, on the other hand, mimics the correct flow development with the recirculating region being correctly predicted. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Verification testing was performed for various Reynolds‐averaged Navier–Stokes methods for uniform flow past a circular cylinder at Re= 5232. The standard and renormalized group (RNG) versions of the k–ε method were examined, along with the Boussinesq, Speziale and Launder constitutive relationships. Wind tunnel experiments for flow past a circular cylinder were also performed to obtain a comparative data set. Preliminary studies demonstrate poor convergence for the Speziale relationship. Verification testing with the standard and RNG k–ε models suggests that the simulations exhibit global monotonic convergence for the Boussinesq models. However, the global order of accuracy of the methods was much lower than the expected order of accuracy of 2. For this reason, pointwise convergence ratios and orders of accuracy were computed to show that not all sampling locations had converged (standard k–ε model: 19% failed to converge; RNG k–ε model: 14% failed to converge). When the non‐convergent points were removed from consideration, the average orders of accuracy are closer to the expected value (standard k–ε model: 1.41; RNG k–ε model: 1.27). Poor iterative and global grid convergence was found for the RNG k–ε/Launder model. The standard and RNG k–ε models with the Boussinesq relationship were compared with experimental data and yielded results significantly different from the experiments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
The generalized Langevin model, which is used to model the motion of stochastic particles in the velocity–composition joint probability density function (PDF) method for reacting turbulent flows, has been extended to incorporate solid wall effects. Anisotropy of Reynolds stresses in the near-wall region has been addressed. Numerical experiments have been performed to demonstrate that the forces in the near-wall region of a turbulent flow cause the stochastic particles approachi ng a solid wall to reverse their direction of motion normal to the wall and thereby, leave the near-wall layer. This new boundary treatment has subsequently been implemented in a full-scale problem to prove its validity. The test problem considered here is that of an isothermal, non-reacting turbulent flow in a two-dimensional channel with plug inflow and a fixed back-pressure. An efficient pressure correction method, developed in the spirit of the PISO algorithm, has been implemented. The pressure correction strategy is easy to implement and is completely consistent with the time- marching scheme used for the solution of the Lagrangian momentum equations. The results show remarkable agreement with both k–ϵ and algebraic Reynolds stress model calculations for the primary velocity. The secondary flow velocity and the turbulent moments are in better agreement with the algebraic Reynolds stress model predictions than the k– ϵ predictions. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts by different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with a full Reynolds stress model (RSM). The turbulent heat fluxes are modelled by a SED concept, the GGDH and the WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models are implemented for an arbitrary three‐dimensional channel. Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non‐staggered grid arrangement. The pressure–velocity coupling is handled by using the SIMPLEC‐algorithm. The convective terms are treated by the van Leer scheme while the diffusive terms are handled by the central‐difference scheme. The hybrid scheme is used for solving the ε equation. The secondary flow generation using the RSM model is compared with a non‐linear kε model (non‐linear eddy viscosity model). The overall comparison between the models is presented in terms of the friction factor and Nusselt number. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Axisymmetrically stable turbulent Taylor vortices between two concentric cylinders are studied with respect to the transition from vortex to wall driven turbulent production. The outer cylinder is stationary and the inner cylinder rotates. A low Reynolds number turbulence model using the kω formulation, facilitates an analysis of the velocity gradients in the Taylor–Couette flow. For a fixed inner radius, three radius ratios 0.734, 0.941 and 0.985 are employed to identify the Reynolds number range at which this transition occurs. At relatively low Reynolds numbers, turbulent production is shown to be dominated by the outflowing boundary of the Taylor vortex. As the Reynolds number increases, shear driven turbulence (due to the rotating cylinder) becomes the dominating factor. For relatively small gaps turbulent flow is shown to occur at Taylor numbers lower than previously reported. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Systematic tests have been performed to study the behaviour of a numerical method developed to calculate 2D, steady free surface flows. The Reynolds equations are solved in the physical space by employing a non–orthogonal staggered grid, while the k-ε model is adopted to approximate the Reynolds stresses. The free surface is calculated following an iterative procedure and various parameters that affect convergence and accuracy of the numerical solution have been examined. Calculated results are compared with measured data for two cases, i.e. the wave generation above a bottom topography at various Froude numbers and the free surface formation above a submerged hydrofoil. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
A numerical algorithm for the steady state solution of three‐dimensional incompressible flows is presented. A preconditioned time marching scheme is applied to the conservative form of the governing equations. The preconditioning matrix multiplies the time derivatives of the system and circumvents the eigenvalue‐caused stiffness at low speed. The formulation is suitable for constant density flows and for flows where the density depends on non‐passive scalars, such as in low‐speed combustion applications. The k–ε model accounts for turbulent transport effects. A cell‐centred finite volume formulation with a Runge–Kutta time stepping scheme for the primitive variables is used. Second‐order spatial accuracy is achieved by developing for the preconditioned system an approximate Riemann solver with MUSCL reconstruction. A multi‐grid technique coupled with local time stepping and implicit residual smoothing is used to accelerate the convergence to the steady state solution. The convergence behaviour and the validation of the predicted solutions are examined for laminar and turbulent constant density flows and for a turbulent non‐premixed flame simulated by a presumed probability density function (PDF) model. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Various wall-bounded flows with complex geometries and free shear flows have been studied with a newly developed realizable Reynolds stress algebraic equation model. The model development is based on the invariant theory in continuum mechanics. This theory enables us to formulate a general constitutive relation for the Reynolds stresses. Pope (J. Fluid Mech., 72 , 331–340 (1975)) was the first to introduce this kind of constitutive relation to turbulence modelling. In our study, realizability is imposed on the truncated constitutive relation to determine the coefficients so that, unlike the standard k–ϵ eddy viscosity model, the present model will not produce negative normal stresses in any situations of rapid distortion. The calculations based on the present model have shown encouraging success in modelling complex turbulent flows.  相似文献   

17.
Two methods for coupling the Reynolds‐averaged Navier–Stokes equations with the qω turbulence model equations on structured grid systems have been studied; namely a loosely coupled method and a strongly coupled method. The loosely coupled method first solves the Navier–Stokes equations with the turbulent viscosity fixed. In a subsequent step, the turbulence model equations are solved with all flow quantities fixed. On the other hand, the strongly coupled method solves the Reynolds‐averaged Navier–Stokes equations and the turbulence model equations simultaneously. In this paper, numerical stabilities of both methods in conjunction with the approximated factorization‐alternative direction implicit method are analysed. The effect of the turbulent kinetic energy terms in the governing equations on the convergence characteristics is also studied. The performance of the two methods is compared for several two‐ and three‐dimensional problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
This paper discusses the importance of realistic implementation of the physical boundary conditions into computational domain for the simulation of the oscillatory turbulent boundary layer flow over smooth and rough flat beds. A mathematical model composed of the Reynolds averaged Navier–Stokes equation, turbulent kinetic energy (k) and dissipation rate of the turbulent kinetic energy (ε) has been developed. Control‐volume approach is used to discretize the governing equations to facilitate the numerical solution. Non‐slip condition is imposed on the bottom surface, and irrotational main flow properties are applied to the upper boundary. The turbulent kinetic energy is zero at the bottom, whereas the dissipation rate is approaching to a constant value, which is proportional to the kinematic viscosity times the second derivative of the turbulent kinetic energy. The output of the model is compared with the available experimental studies conducted in oscillatory tunnels and wave flume. It is observed that the irrotational flow assumption at the upper boundary is not realistic in case of water tunnels. Therefore, new upper boundary conditions are proposed for oscillatory tunnels. The data of wave flume show good agreement with the proposed numerical model. Additionally, several factors such as grid aspect ratio, staggered grid arrangement, time‐marching scheme and convergence criteria that are important to obtain a robust, realistic and stable code are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Presently, improving the accuracy and reducing computational costs are still two major CFD objectives often considered incompatible. This paper proposes to solve this dilemma by developing an adaptive mesh refinement method in order to integrate the 3D Euler and Navier–Stokes equations on structured meshes, where a local multigrid method is used to accelerate convergence for steady compressible flows. The time integration method is a LU‐SGS method (AIAA J 1988; 26: 1025–1026) associated with a spatial Jameson‐type scheme (Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time‐stepping schemes. AIAA Paper, 81‐1259, 1981). Computations of turbulent flows are handled by the standard k–ω model of Wilcox (AIAA J 1994; 32: 247–255). A coarse grid correction, based on composite residuals, has been devised in order to enforce the coupling between the different grid levels and to accelerate the convergence. The efficiency of the method is evaluated on standard 2D and 3D aerodynamic configurations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents manufactured solutions (MSs) for some well‐known eddy‐viscosity turbulence models, viz. the Spalart & Allmaras one‐equation model and the TNT and BSL versions of the two‐equation k–ω model. The manufactured flow solutions apply to two‐dimensional, steady, wall‐bounded, incompressible, turbulent flows. The two velocity components and the pressure are identical for all MSs, but various alternatives are considered for specifying the eddy‐viscosity and other turbulence quantities in the turbulence models. The results obtained for the proposed MSs with a second‐order accurate numerical method show that the MSs for turbulence quantities must be constructed carefully to avoid instabilities in the numerical solutions. This behaviour is model dependent: the performance of the Spalart & Allmaras and k–ω models is significantly affected by the type of MS. In one of the MSs tested, even the two versions of the k–ω model exhibit significant differences in the convergence properties. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号