首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Nuclear Physics B》1999,546(3):711-730
We construct Landau-Ginzburg effective field theories for fractional quantum Hall states - such as the Pfaffian state - which exhibit non-abelian statistics. These theories rely on a Meissner construction which increases the level of a non-abelian Chem-Simons theory while simultaneously projecting out the unwanted degrees of freedom of a concomitant enveloping abelian theory. We describe this construction in the context of a system of bosons at Landau level filling factor ν = l, where the non-abelian symmetry is a dynamically generated SU(2) continuous extension of the discrete particle-hole symmetry of the lowest Landau level. We show how the physics of quasiparticles and their non-abelian statistics arises in this Landau-Ginzburg theory. We describe its relation to edge theories - where a coset construction plays the role of the Meissner projection — and discuss extensions to other states.  相似文献   

2.
We present explicit wavefunctions for quasi-hole excitations over a variety of non-abelian quantum Hall states: the Read-Rezayi states with k ? 3 clustering properties and a paired spin-singlet quantum Hall state. Quasi-holes over these states constitute a topological quantum register, which can be addressed by braiding quasi-holes. We obtain the braid properties by direct inspection of the quasi-hole wavefunctions. We establish that the braid properties for the paired spin-singlet state are those of ‘Fibonacci anyons’, and thus suitable for universal quantum computation. Our derivations in this paper rely on explicit computations in the parafermionic conformal field theories that underly these particular quantum Hall states.  相似文献   

3.
4.
《Nuclear Physics B》1999,556(3):530-544
We introduce the notion of ‘order-k non-abelian exclusion statistics’. We derive the associated thermodynamic equations by employing the thermodynamic Bethe ansatz for specific non-diagonal scattering matrices. We make contact with results obtained by different methods and we point out connections with ‘fermionic sum formulas’ for characters in a conformal field theory. As an application, we derive thermodynamic distribution functions for quasi-holes over a class of non-abelian quantum Hall states recently proposed by Read and Rezayi.  相似文献   

5.
《Nuclear Physics B》1998,516(3):704-718
We present a low-energy effective field theory describing the universality class of the Pfaffian quantum Hall state. To arrive at this theory, we observe that the edge theory of the Pfaffian state of bosons at v = 1 is an SU(2)2 Kac-Moody algebra. It follows that the corresponding bulk effective field theory is an SU(2) Chem-Simons theory with coupling constant k = 2. The effective field theories for other Pfaffian states, such as the fermionic one at v = 1/2 are obtained by a flux-attachment procedure. We discuss the non-Abelian statistics of quasiparticles in the context of this effective field theory.  相似文献   

6.
《Nuclear Physics B》2001,607(3):549-576
We investigate a class of non-abelian spin-singlet (NASS) quantum Hall phases, proposed previously. The trial ground and quasihole excited states are exact eigenstates of certain (k+1)-body interaction Hamiltonians. The k=1 cases are the familiar Halperin abelian spin-singlet states. We present closed-form expressions for the many-body wave functions of the ground states, which for k>1 were previously defined only in terms of correlators in specific conformal field theories. The states contain clusters of k electrons, each cluster having either all spins up, or all spins down. The ground states are non-degenerate, while the quasihole excitations over these states show characteristic degeneracies, which give rise to non-abelian braid statistics. Using conformal field theory methods, we derive counting rules that determine the degeneracies in a spherical geometry. The results are checked against explicit numerical diagonalization studies for small numbers of particles on the sphere.  相似文献   

7.
Applications of conformal field theory to the theory of fractional quantum Hall systems are discussed. In particular, Laughlin's wave function and its cousins are interpreted as conformal blocks in certain rational conformal field theories. Using this point of view a hamiltonian is constructed for electrons for which the ground state is known exactly and whose quasihole excitations have nonabelian statistics; we term these objects “nonabelions”. It is argued that universality classes of fractional quantum Hall systems can be characterized by the quantum numbers and statistics of their excitations. The relation between the order parameter in the fractional quantum Hall effect and the chiral algebra in rational conformal field theory is stressed, and new order parameters for several states are given.  相似文献   

8.
9.
We study excitations in edge theories for non-abelian quantum Hall states, focussing on the spin polarized states proposed by Read and Rezayi and on the spin singlet states proposed by two of the authors. By studying the exclusion statistics properties of edge-electrons and edge-quasiholes, we arrive at a novel K-matrix structure. Interestingly, the duality between the electron and quasihole sectors links the pseudoparticles that are characteristic for non-abelian statistics with composite particles that are associated to the pairing physics of the non-abelian quantum Hall states.  相似文献   

10.
11.
《Nuclear Physics B》1995,448(3):470-504
In this paper, we pursue our analysis of the W1+∞ symmetry of the low-energy edge excitations of incompressible quantum Hall fluids. These excitations are described by (1 + 1)-dimensional effective field theories, which are built by representations of the W1+∞ algebra. Generic W1+∞ theories predict many more fluids than the few, stable ones found in experiments. Here we identify a particular class of W1+∞ theories, the minimal models, which are made of degenerate representations only - a familiar construction in conformal field theory. The W1+∞ minimal models exist for specific values of the fractional Hall conductivity, which nicely fit the experimental data and match the results of the Jain hierarchy of quantum Hall fluids. We thus obtain a new hierarchical construction, which is based uniquely on the concept of quantum incompressible fluid and is independent of Jain's approach and hypotheses. Furthermore, a surprising non-abelian structure is found in the W1+∞ minimal models: they possess neutral quark-like excitations with SU(m) quantum numbers and non-abelian fractional statistics. The physical electron is made of anyon and quark excitations. We discuss some properties of these neutral excitations which could be seen in experiments and numerical simulations.  相似文献   

12.
We develop a general framework to (numerically) study adiabatic braiding of quasiholes in fractional quantum Hall systems. Specifically, we investigate the Moore-Read (MR) state at nu=1/2 filling factor, a known candidate for non-Abelian statistics, which appears to actually occur in nature. The non-Abelian statistics of MR quasiholes is demonstrated explicitly for the first time, confirming the results predicted by conformal field theories.  相似文献   

13.
Here, we show that the incompressible Pfaffian state originally proposed for the 5/2 fractional quantum Hall states in conventional two-dimensional electron systems can actually be found in a bilayer graphene at one of the Landau levels. The properties and stability of the Pfaffian state at this special Landau level strongly depend on the magnetic field strength. The graphene system shows a transition from the incompressible to a compressible state with increasing magnetic field. At a finite magnetic field of ~10 T, the Pfaffian state in bilayer graphene becomes more stable than its counterpart in conventional electron systems.  相似文献   

14.
《Nuclear Physics B》1997,498(3):513-538
We propose field theories for the bulk and edge of a quantum Hall state in the universality class of the Haldane-Rezayi wavefunction. The bulk theory is associated with the c = −2 conformal field theory. The topological properties of the state, such as the quasiparticle braiding statistics and ground state degeneracy on a torus, may be deduced from this conformal field theory. The 10-fold degeneracy on a torus is explained by the existence of a logarithmic operator in the c = −2 theory; this operator corresponds to a novel bulk excitation in the quantum Hall state. We argue that the edge theory is the c = 1 chiral Dirac fermion, which is related in a simple way to the c = −2 theory of the bulk. This theory is reformulated as a truncated version of a doublet of Dirac fermions in which the SU(2) symmetry - which corresponds to the spin-rotational symmetry of the quantum Hall system - is manifest and non-local. We make predictions for the current-voltage characteristics for transport through point contacts.  相似文献   

15.
We show that the particle-hole conjugate of the Pfaffian state-or "anti-Pfaffian" state-is in a different universality class from the Pfaffian state, with different topological order. The two states can be distinguished easily by their edge physics: their edges differ in both their thermal Hall conductance and their tunneling exponents. At the same time, the two states are exactly degenerate in energy for a nu=5/2 quantum Hall system in the idealized limit of zero Landau level mixing. Thus, both are good candidates for the observed sigma_{xy}=5/2(e;{2}/h) quantum Hall plateau.  相似文献   

16.
Fractionally charged quasiparticles, which obey non-abelian statistics, were predicted to exist in the ν=8/3, ν=5/2, and ν=7/3 fractional quantum Hall states (in the second Landau level). Here we present measurements of charge and neutral modes in these states. For both ν=7/3 and ν=8/3 states, we found a quasiparticle charge e=1/3 and an upstream neutral mode only in ν=8/3-excluding the possibility of non-abelian Read-Rezayi states and supporting Laughlin-like states. The absence of an upstream neutral mode in the ν=7/3 state also proves that edge reconstruction was not present in the ν=7/3 state, suggesting its absence also in ν=5/2 state, and thus may provide further support for the non-abelian anti-pfaffian nature of the ν=5/2 state.  相似文献   

17.
Using a tilted-field geometry, the effect of an in-plane magnetic field on the even denominator nu=5/2 fractional quantum Hall state is studied. The energy gap of the nu=5/2 state is found to collapse linearly with the in-plane magnetic field above approximately 0.5 T. In contrast, a strong enhancement of the gap is observed for the nu=7/3 state. The radically distinct tilted-field behavior between the two states is discussed in terms of Zeeman and magneto-orbital coupling within the context of the proposed Moore-Read Pfaffian wave function for the 5/2 fractional quantum Hall effect.  相似文献   

18.
Lu YM  Yu Y  Wang Z 《Physical review letters》2010,105(21):216801
A theory is developed for the paired even-denominator fractional quantum Hall states in the lowest Landau level. We show that electrons bind to quantized vortices to form composite fermions, interacting through an exact instantaneous interaction that favors chiral p-wave pairing. There are two canonically dual pairing gap functions related by the bosonic Laughlin wave function (Jastrow factor) due to the correlation holes. We find that the ground state is the Moore-Read Pfaffian in the long-wavelength limit for weak Coulomb interactions, a new Pfaffian with an oscillatory pairing function for intermediate interactions, and a Read-Rezayi composite Fermi liquid beyond a critical interaction strength. Our findings are consistent with recent experimental observations of the 1/2 and 1/4 fractional quantum Hall effects in asymmetric wide quantum wells.  相似文献   

19.
Inspired by the recent theoretical discovery of robust fractional topological phases without a magnetic field, we search for the non-abelian quantum Hall effect in lattice models with topological flat bands. Through extensive numerical studies on the Haldane model with three-body hard-core bosons loaded into a topological flat band, we find convincing numerical evidence of a stable ν=1 bosonic non-abelian quantum Hall effect, with the characteristic threefold quasidegeneracy of ground states on a torus, a quantized Chern number, and a robust spectrum gap. Moreover, the spectrum for two-quasihole states also shows a finite energy gap, with the number of states in the lower-energy sector satisfying the same counting rule as the Moore-Read pfaffian state.  相似文献   

20.
We study the coupling between a quantum dot and the edge of a non-Abelian fractional quantum Hall state which is spatially separated from it by an integer quantum Hall state. Near a resonance, the physics at energy scales below the level spacing of the edge states of the dot is governed by a k-channel Kondo model when the quantum Hall state is a Read-Rezayi state at filling fraction nu=2+k/(k+2) or its particle-hole conjugate at nu=2+2/(k+2). The k-channel Kondo model is channel isotropic even without fine-tuning in the former state; in the latter, it is generically channel anisotropic. In the special case of k=2, our results provide a new venue, realized in a mesoscopic context, to distinguish between the Pfaffian and anti-Pfaffian states at filling fraction nu=5/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号