首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Three‐component systems, which contain a light‐absorbing species (typically a dye), an electron donor (typically an amine), and a third component (usually an iodonium salt), have emerged as efficient, visible‐light‐sensitive photoinitiators. Although three‐component systems have been consistently found to be faster and more efficient than their two‐component counterparts, these systems are not well understood and a number of distinct mechanisms have been reported in the literature. In this contribution, photodifferential scanning calorimetry and in situ, time‐resolved, laser‐induced, steady‐state fluorescence spectroscopy were used to study the initiation mechanism of the three‐component system methylene blue, N‐methyldiethanolamine and diphenyliodonium chloride. Kinetic studies based upon photodifferential scanning calorimetry reveal a significant increase in polymerization rate with increasing concentration of either the amine or the iodonium salt. However, the laser‐induced fluorescence experiments show that while increasing the amine concentration dramatically increases the rate of dye fluorescence decay, increasing the DPI concentration actually slows consumption of the dye. We concluded that the primary photochemical reaction involves electron transfer from the amine to the dye. We suggest that the iodonium salt reacts with the resulting dye‐based radical (which is active only for termination) to regenerate the original dye and simultaneously produce a phenyl radical (active in initiation) derived from the diphenyliodonium salt. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2057–2066, 2000  相似文献   

2.
In this article, we extend our mechanistic study of the three‐component radical photoinitiator system, consisting of methylene blue (MB), N‐methyldiethanolamine, and diphenyliodonium chloride, by investigating the influence of oxygen on the rate of the consumption of MB dye. The mechanism involves electron transfer/proton transfer from the amine to the dye as the primary photochemical reaction. Oxygen quenches the triplet state of the dye, leading to retardation of the reaction. We used time‐resolved steady‐state fluorescence monitoring to observe the MB concentration in situ in both a constant oxygen environment and a sealed reactor as the dye is consumed via photoreaction. In the sealed reactor, we observed a retardation period (attributed to the presence of oxygen) followed by rapid exponential decay of the MB fluorescence after the oxygen was depleted. On the basis of the impact of the amine and iodonium concentrations on the fluorescence intensity and the duration of the retardation period, our proposed mechanism includes an oxygen‐scavenging pathway, in which the tertiary amine radicals formed in the primary photochemical process consume the oxygen via a cyclic reaction mechanism. The iodonium salt is an electron acceptor, acting to reoxidize the neutral dye radical back to its original state and allowing it to reenter the primary photochemical process. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3336–3346, 2000  相似文献   

3.
New three‐component photoinitiating systems consisting of a cyanine dye, borate salt, and a 1,3,5‐triazine derivative were investigated by measuring their photoinitiation activities and through fluorescence quenching experiments. Polymerization kinetic studies based on the microcalorimetric method revealed a significant increase in polymerization rate when the concentration of n‐butyltriphenylborate salt or the 1,3,5‐triazine derivative were increased. The photo‐induced electron transfer process between electron donor and electron acceptor was studied by means of fluorescence quenching and SrEt change of the fluorescence intensity. The experiments performed documented that an increase of the n‐butyltriphenylborate salt concentration dramatically increases the rate of dye fluorescence quenching, whereas the increasing of the 1,3,5‐triazine derivative concentration slows down the consumption of the dye. We conclude that the primary photochemical reaction involves an electron transfer from the n‐butyltriphenylborate anion to the excited singlet state of the dye, followed by the reaction of the 1,3,5‐triazine derivative with the resulting dye radical to regenerate the original dye. This reaction simultaneously produces a triazinyl radical anion derived from the 1,3,5‐triazine, which undergoes the carbon‐halogen bond cleavage yielding radicals active in initiation of a free radical polymerization chain. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3626–3636, 2007  相似文献   

4.
The kinetics and mechanism of the photopolymerization of dimethacrylates using three‐component initiation systems consisting of camphorquinone (CQ), diphenyliodonium hexafluorophosphate (Ph2IPF6), and either N,N,3,5‐tetramethylaniline (TMA) or N,N‐dimethylbenzylamine or triethylamine were studied by photo‐DSC and UV‐visible spectroscopy. The effect of monomer structure on the curing kinetics and photobleaching were also investigated. Photo‐DSC studies showed fivefold increases in polymerization rate when all three components were present and the kinetics followed the trend: CQ/amine/Ph2IPF6 ? CQ/amine > CQ/Ph2IPF6.. For both CQ/amine/Ph2IPF6 and CQ/amine systems, the CQ was rapidly photobleached during the photo‐DSC timescale but for the systems without amine there was an induction stage before CQ photobleaching was evident. Studies of the effect of monomer type on the photobleaching rate show that the photobleaching behavior was independent of monomer structure. Three photoinitiation mechanisms have been proposed. The reaction mechanism of the CQ/amine/Ph2IPF6 system involves the reduction of the excited CQ molecule by the amine to form ketyl and aminoalkyl radicals, followed by the irreversible oxidation of the amine, and to a lesser extent, the ketyl radical by the iodonium salt, to form an initiating radical. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Three‐component initiators generally include a light‐absorbing photosensitizer, an electron donor that is often an amine, and the third component, which is usually an iodonium salt. To characterize the role of diphenyl iodonium chloride (DPI) in three‐component photoinitiator systems containing methylene blue (MB) as the photosensitizer, a systematic series of electron donors was used. The Rhem–Weller equation was used to verify the thermodynamic feasibility for photo‐induced electron transfer from the electron donors to the MB. Comparison of the photopolymerization rates of each two‐component initiator system (containing the photosensitizer and amine) to those of the corresponding three‐component system (with the addition of (DPI) allowed fundamental information regarding the role of the DPI to be obtained. It was concluded that the DPI enhances the photopolymerization kinetics in two ways: (1) it consumes an inactive MB neutral radical and produces an active phenyl radical, thereby regenerating the original methylene blue, and (2) it reduces the recombination reaction of the MB neutral radical and amine radical/cation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5863–5871, 2004  相似文献   

6.
Isoquinolinone derivatives (IQ) have been synthesized and combined with different additives (an amine, 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine, an iodonium salt, or N‐vinylcarbazole) to produce reactive species (i.e. radicals and cations) being able to initiate the radical polymerization of acrylates, the cationic polymerization of epoxides, the thiol‐ene polymerization of trifunctional thiol/divinylether, and the synthesis of epoxide/acrylate interpenetrated polymer network IPN upon exposure to very soft polychromatic visible lights, blue laser diode or blue LED lights. Compared with the use of camphorquinone based systems, the novel combinations employed here ensures higher monomer conversions (~50–60% vs. ~15–35%) and better polymerization rates in radical polymerization. The chemical mechanisms are studied by steady‐state photolysis, fluorescence, cyclic voltammetry, laser flash photolysis, and electron spin resonance spin trapping techniques. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 567–575  相似文献   

7.
Naphthalimide‐phthalimide derivatives (NDPDs) have been synthesized and combined with an iodonium salt, N‐vinylcarbazole, amine or 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine to produce reactive species (i.e., radicals and cations). These generated reactive species are capable of initiating the cationic polymerization of epoxides and/or the radical polymerization of acrylates upon exposure to very soft polychromatic visible lights or blue lights. Compared with the well‐known camphorquinone based systems used as references, the novel NDPD based combinations employed here demonstrate clearly higher efficiencies for the cationic polymerization of epoxides under air as well as the radical polymerization of acrylates. Remarkably, one of the NDPDs (i.e., NDPD2) based systems is characterized by an outstanding reactivity. The structure/reactivity/efficiency relationships of the investigated NDPDs were studied by fluorescence, cyclic voltammetry, laser flash photolysis, electron spin resonance spin trapping, and steady state photolysis techniques. The key parameters for their reactivity are provided. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 665–674  相似文献   

8.
The cations and radicals produced in aminothiazonaphthalic anhydride derivatives (ATNAs) combined with an iodonium salt, N‐vinylcarbazole, amine, or chloro triazine initiate the ring‐opening cationic polymerization of epoxides and the free radical polymerization of acrylates under LEDs at 405 or 455 nm. The photoinitiating ability of these novel photoinitiating systems is higher than that of the well‐known camphorquinone‐based systems. An example of the high reactivity of the new proposed photoinitiator is also provided in resins for 3D‐printing using a LED projector@405 nm. The chemical mechanisms are investigated by steady‐state photolysis, cyclic voltammetry, fluorescence, laser flash photolysis, and electron spin resonance spin‐trapping techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1189–1196  相似文献   

9.
A benzophenone‐naphthalimide derivative (BPND) bearing tertiary amine groups has been developed as a high‐performance photoinitiator in combination with 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine or an iodonium salt for both the free radical polymerization (FRP) of acrylates and the cationic polymerization (CP) of epoxides upon exposure to near UV and visible LEDs (385–470 nm). BPND can even produce radicals without any added hydrogen donor. The photochemical mechanisms are studied by molecular orbital calculations, steady state photolysis, electron spin resonance spin trapping, fluorescence, cyclic voltammetry and laser flash photolysis techniques. These novel BPND based photoinitiating systems exhibit an efficiency higher than that of the well‐known camphorquinone‐based systems (FRP and CP) or comparable to that of bis(2,4,6‐trimethylbenzoyl)‐phenylphosphineoxide (FRP at λ ≤ 455 nm). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 445–451  相似文献   

10.
The photoinduced solution polymerization of 4‐methacryloyl‐1,2,2,6,6‐pentamethyl‐piperidinyl (MPMP), used as a reactive hindered amine piperidinol derivative, was performed. The obtained MPMP homopolymer had a very narrow molecular weight distribution (1.06–1.39) according to gel permeation chromatography. The number‐average and weight‐average molecular weights increased linearly with the monomer conversion, this being characteristic of controlled/living free‐radical polymerizations. Electron spin resonance signals were detected in the MPMP homopolymer and in a polymer mixture solution, and they were assigned to nitroxide radicals, which were bound to the polymer chains and persisted at a level of 10?9 mol/L during the polymerization. Instead of the addition of mediated nitroxide radicals such as 2,2,6,6‐tetramethyl‐piperidinyl‐1‐oxy (TEMPO), those radicals (>N? O ·) were formed in situ during the photopolymerization of MPMP, and so the reaction mechanism was understood as being similar to that of TEMPO‐mediated controlled/living free‐radical polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2659–2665, 2004  相似文献   

11.
A visible light photoinitiator, eosin, in combination with a tertiary amine coinitiator is found to initiate polymerization despite the presence of at least 1000‐fold excess dissolved oxygen, which functions as an inhibitor of radical polymerizations. Additionally, 0.4 μM eosin is able to overcome 100‐fold excess (40 μM) 2,2,6,6‐Tetramethyl‐1‐piperidinyloxy (TEMPO) inhibitor, initiating polymerization after only a 2 min inhibition period. In contrast, 40 μM Irgacure‐2959, a standard cleavage‐type initiator, is unable to overcome even an equivalent amount of inhibitor (40 μM TEMPO). Through additional comparisons of these two initiation systems, a reaction mechanism is developed which is consistent with the kinetic data and provides an explanation for eosin's relative insensitivity to oxygen, TEMPO, and other inhibitors. A cyclic mechanism is proposed in which semireduced eosin radicals react by disproportionation with radical inhibitors and radical intermediates in the inhibition process to regenerate eosin and effectively consume inhibitor. In behavior similar to that of eosin, rose bengal, fluorescein, and riboflavin are also found to initiate polymerization despite the presence of excess TEMPO, indicating that cyclic regeneration likely enhances the photoinitiation kinetics of many dye photosensitizers. Selection of such dye initiation systems constitutes a valuable strategy for alleviating inhibitory effects in radical polymerizations. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6083–6094, 2009  相似文献   

12.
The new photoinitiating systems for free radical polymerization of multifunctional monomers composed of carbocyanine dye, 1,3,5‐triazine derivative and heteroaromatic mercaptan were described. It was shown, that the polymerization abilities of such photoinitiatng systems are comparable with those observed for well‐known cyanine borate two‐component photoinitiating systems. The fluorescence quenching rate constants of tested sensitizer was about 2 × 1010 M?1s?1. Basing on the results of laser flash photolysis, the mechanism of the photochemical reactions occuring in the three‐component photoinitiating system was proposed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4243–4251, 2010  相似文献   

13.
Two D‐π‐A‐type 2,2,2‐trifluoroacetophenone derivatives, namely, 4′‐(4‐( N,N‐diphenyl)amino‐phenyl)‐phenyl‐2,2,2‐trifluoroacetophenone (PI‐Ben) and 4′‐(4‐(7‐(N,N‐diphenylamino)‐9,9‐dimethyl‐9H‐fluoren‐2‐yl)‐phenyl‐2,2,2‐trifluoroacetophenone (PI‐Flu), are developed as high‐performance photoinitiators combined with an amine or an iodonium salt for both the free‐radical polymerization of acrylates and the cationic polymerization of epoxides and vinyl ether upon exposure to near‐UV and visible light‐emitting diodes (LEDs; e.g., 365, 385, 405, and 450 nm). The photochemical mechanisms are investigated by UV‐Vis spectra, molecular‐orbital calculations, fluorescence, cyclic voltammetry, photolysis, and electron‐spin‐resonance spin‐trapping techniques. Compared with 2,2,2‐trifluoroacetophenone, both photoinitiators exhibit larger redshift of the absorption spectra and higher molar‐extinction coefficients. PI‐Ben and PI‐Flu themselves can produce free radicals to initiate the polymerization of acrylate without any added hydrogen donor. These novel D‐π‐A type trifluoroacetophenone‐based photoinitiating systems exhibit good efficiencies (acrylate conversion = 48%–66%; epoxide conversion = 85%–95%; LEDs at 365–450 nm exposure) even in low‐concentration initiators (0.5%, w/w) and very low curing light intensities (1–2 mW cm?2). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1945–1954  相似文献   

14.
We studied the photoinduced electron‐transfer polymerization of acrylamide with, as a visible‐light initiator, the heterocycle‐N‐oxide resazurin in the presence of triethanolamine. The irradiation of resazurin produces resorufin, which also absorbs in the visible region. Both phenoxazine dyes in the presence of the amine are efficient photoinitiators of acrylamide polymerization in an aqueous medium. The polymerization rates were measured at several amine concentrations. These values increase with the amine concentration, reaching a maximum value; further amine addition slightly decreases the polymerization rate. Time‐resolved photolysis studies of the dyes were carried out under the polymerization conditions. The quenching of the dye excited states by the amine was analyzed with static‐fluorescence and laser‐flash photolysis. These data were used for fitting curves of the polymerization rate versus the amine concentration, and it was concluded that the interaction of triplet excited dyes with the amine leads to acrylamide polymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4074–4082, 2001  相似文献   

15.
1,3,5,7,8‐pentamethyl pyrromethene difluoroborate complex (HMP) and 2,6‐diethyl‐8‐phenyl‐1,3,5,7‐tetramethylpyrromethene difluoroborate complex (EPP) were used to initiate the polymerization of a diacrylate in a two‐ and a three‐component photoinitiating system (PIS), together with an amine (ethyl‐4‐dimethylaminobenzoate, EDB) and triazine A (2‐(4‐methoxyphenyl)‐4,6‐bis(trichloromethyl)‐1,3,5‐triazine, TA) as coinitiators. For both pyrromethene dyes, the highest conversion was achieved with the three‐component PIS. As these dyes have high‐fluorescence quantum yields, steady state and time‐resolved techniques were used to study the possible fluorescence quenching by the amine and the triazine, as well as laser flash photolysis to investigate the electron transfer process that occurs in these PIS from either the singlet or triplet excited states. The electron transfer reaction is evidenced by using time‐resolved photoconductivity. Experiments show that the main interaction between the dye and both coinitiators is through its excited singlet state and the process is more efficient when TA is present. The beneficial effect noted when both coinitiators are used in a three‐component system is ascribed to secondary reactions between the coinitiators and intermediates that lead to the generation of higher amount of initiating species and the recovery of the initial dye. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2594–2603, 2010  相似文献   

16.
N‐Bromosuccinimide (NBS) was used as the initiator in the atom transfer radical polymerizations of styrene (St) and methyl methacrylate (MMA). The NBS/CuBr/bipyridine (bpy) system shows good controllability for both polymerizations and yields polymers with polydispersity indexes ranging from 1.18 to 1.25 for St and 1.14 to 1.41 for MMA, depending on the conditions used. The end‐group analysis of poly(MMA) and polystyrene indicated the polymerization is initiated by the succinimidyl radicals formed from the redox reaction of NBS with CuBr/bpy. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5811–5816, 2004  相似文献   

17.
Novel thioxanthone (TX) derivatives are used as versatile photoinitiators upon visible light‐emitting diode (LED; e.g., 405, 425, and 450 nm) exposure. The mechanisms for the photochemical generation of reactive species (i.e., cations and free radicals) produced from photoinitiating systems based on the photoinitiator and an iodonium salt, tris(trimethylsilyl)silane, or an amine, were studied by UV–vis spectroscopy, fluorescence, cyclic voltammetry, steady‐state photolysis, and electron spin resonance spin‐trapping techniques. The reactive species are particularly efficient for cationic, free radical, hybrid, and thiol‐ene photopolymerizations upon LED exposure. The optimized photoinitiating systems exhibit higher efficiency than those of reference systems (i.e., isopropyl TX‐based photoinitiating systems), especially in the visible range. According to their beneficial features, these photoinitiating systems have considerable potential in photocuring applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4037–4045  相似文献   

18.
Three‐component photoinitiators comprised of an N‐arylphthalimide, a diarylketone, and a tertiary amine were investigated for their initiation efficiency of acrylate polymerization. The use of an electron‐deficient N‐arylphthalimide resulted in a greater acrylate polymerization rate than an electron‐rich N‐arylphthalimide. Triplet energies of each N‐arylphthalimide, determined from their phosphorescence spectra, and the respective rate constants for triplet quenching by the N‐arylphthalimide derivatives (acquired via laser flash photolysis) indicated that an electron–proton transfer from an intermediate radical species to the N‐arylphthalimide (not energy transfer from triplet sensitization) is responsible for generating the initiating radicals under the conditions and species concentrations used for polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4009–4015, 2004  相似文献   

19.
The macroinitiator of a copolymer (PMDBTM) of methyl methacrylate (MMA) and 2‐(dimethylamino)ethyl methacrylate (DAMA) with 4‐benzyloxy‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (BTEMPO) pendant groups was prepared by the photochemical reaction of tertiary amine groups of the copolymer with benzophenone in the presence of BTEMPO. The radical copolymerization of MMA and DAMA was carried out first with azo‐bis‐isobutyronitrile (AIBN) as an initiator; then, the dimethylamine groups of the copolymer constituted a charge‐transfer complex with benzophenone under UV irradiation, and the methylene of ternary amine and diphenyl methanol radicals were produced. The former was capped by BTEMPO, and the nitroxide (BTEMPO) was attached to the polymeric backbone. The amount of pendant BTEMPO on PMDBTM was measured by 1H NMR. PMDBTM initiated the graft polymerization of styrene via a controlled radical mechanism, and the molecular weight of the PMD‐g‐polystyrene increased with the polymerization time. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 604–612, 2001  相似文献   

20.
Four novel onium salts (onium‐polyoxometalate) have been synthesized and characterized. They contain a diphenyliodonium or a thianthrenium (TH) moiety and a polyoxomolybdate or a polyoxotungstate as new counter anions. Outstandingly, these counter anions are photochemically active and can sensitize the decomposition of the iodonium or TH moiety through an intramolecular electron transfer. The phenyl radicals generated upon UV light irradiation (Xe–Hg lamp) are very efficient to initiate the radical polymerization of acrylates. Cations are also generated for the cationic polymerization of epoxides. Remarkably, these novel iodonium and TH salts are characterized by a higher reactivity compared with that of the diphenyliodonium hexafluorophosphate and the commercial TH salt, respectively. Interpenetrating polymer networks can also be obtained under air through a concomitant cationic/radical photopolymerization of an epoxy/acrylate blend (monomer conversions > 65%). The photochemical mechanisms are studied by steady‐state photolysis, cyclic voltammetry, and electron spin resonance techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 981–989  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号