首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The suitability of the (n-butCp)2ZrCl2/methylaluminoxane (MAO) catalyst system for the copolymerization of ethene with propene, hexene, and hexadecene was studied and Ind2ZrCl2/MAO was tested as a catalyst for ethene/propene and ethene/hexene copolymerizations. The synergistic effect of longer α-olefin on propene incorporation in ethene/propene/hexene and ethene/propene/hexadecene terpolymerizations was investigated with Et(Ind)2ZrCl2MAO and (n-butCp)2ZrCl2/MAO catalyst systems. The molar masses, molar mass distributions, melting points, and densities of the products were measured. The incorporation of comonomer in the chain was further studied by segregation fractionation techniques (SFT), by differential scanning calorimetry (DSC), studying the β relaxations by dynamic mechanical analysis (DMA) and by studying the microstructure of some copolymers by 13C-NMR. In this study (n-butCp)2ZrCl2 and Ind2ZrCl2 exhibited equal response in copolymerization of ethene and propene and both catalysts were more active towards propene than longer α-olefins. A nearly identical incorporation of propene in the chain was found for the two catalysts when a higher propene feed was used. A lower hexene feed gave a more homogeneous comonomer distribution curve than a higher hexene feed and also showed the presence of branching. In terpolymerizations catalyzed with (n-butCp)2ZrCl2, the hexadecene concentrations of the ethene/propene/hexadecene terpolymers were always very low, and only traces of hexene were detected in ethene/propene/hexene terpolymers. With hexene no clear synergistic effect on the propene incorporation in the terpolymer was detected and with hexadecene the effect of the longer α-olefin was even slightly negative. With an Et(Ind)2ZrCl2/MAO catalyst system both hexene and hexadecene were incorporated in the chain in the terpolymerizations. © 1997 John Wiley & Sons, Inc.  相似文献   

2.
Ethene/1‐olefin blocky copolymers were obtained through nonliving insertion copolymerizations promoted by an isospecific single site catalyst. Propene or 4‐methyl‐1‐pentene were copolymerized with ethene with metallocenes endowed with different stereospecificity in propene polymerization: (i) aspecific “constrained geometry” half‐sandwich complex, {η15‐([tert‐butyl‐amido)dimethylsilyl](2,3,4,5‐tetramethyl‐1‐cyclopentadienyl)}titanium dichloride [Me2Si(Me4Cp)(NtBu)TiCl2] ( CG ), (ii) moderately isospecific rac‐ethylenebis(indenyl)zirconium dichloride [rac‐(EBI)ZrCl2] ( EBI ), (iii) slightly more isospecific hydrogenated homologue, rac‐ethylenebis(tetrahydroindenyl)zirconium dichloride [rac‐(EBTHI)ZrCl2] ( EBTHI ), (iv) highly iso‐specific rac‐[methylenebis(3‐tert‐butyl‐1‐indenyl)]zirconium dichloride [rac‐H2C‐(3‐tBuInd)2ZrCl2] ( TBI ), (v) most isospecific rac‐[isopropylidene‐bis(3‐tert‐butyl‐cyclopentadienyl)]zirconium dichloride [rac‐Me2C‐(3‐tBuCp)2ZrCl2] ( TBC ). Copolymerizations were described by a 2nd order Markovian copolymerization model and data are proposed to correlate the formation of 1‐olefin sequences with catalytic site isospecificity, made by the cooperation of organometallic complex and growing chain. Blocky copolymers were prepared over wide ranges of compositions: with any of the isospecific metallocenes when 4‐methyl‐1‐pentene was the 1‐olefin and only with the highly isospecific ones ( TBI , TBC ) when propene was the comonomer. A penultimate unit effect was observed with TBI as the metallocene, whereas a 1st order Markov model described the ethene/propene copolymerization from TBC . A moderately isospecific metallocene, such as EBI , is shown to be able to prepare blocky ethene copolymers with 4‐methyl‐1‐pentene. These results pave the way for the synthesis of new ethene based materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2063–2075, 2010  相似文献   

3.
The incorporation of 5‐vinyl‐2‐norbornene (VNB) into ethylene‐norbornene copolymer was investigated with catalysts [Ph2C(Fluo)(Cp)]ZrCl2 ( 1 ), rac‐[Et(Ind)2]ZrCl2 ( 2 ), and [Me2Si(Me4Cp)tBuN]TiCl2 ( 3 ) in the presence of MAO by terpolymerizing different amounts of 5‐vinyl‐2‐norbornene with constant amounts of ethylene and norbornene at 60°C. The highest cycloolefin incorporations and highest activity in terpolymerizations were achieved with 1 . The distribution of the monomers in the terpolymer chain was determined by NMR spectroscopy. As confirmed by XRD and DSC analysis, catalysts 1 and 3 produced amorphous terpolymer, whereas 2 yielded terpolymer with crystalline fragments of long ethylene sequences. When compared with poly‐(ethylene‐co‐norbornene), VNB increased both the glass transition temperatures and molar masses of terpolymers produced with the constrained geometry catalyst whereas decreased those for the metallocenes.  相似文献   

4.
Summary: Polypropylene-nanocomposites were prepared by in-situ polymerization with the catalysts systems rac[Et(IndH4)2]ZrCl2, Me2Si(Flu)(Ind)ZrCl2 and rac[Me2Si(2-Me-4-(1-Naph)Ind)2]ZrCl2. The type and size of the nanoparticles and the concentration of the propene were varied. The activity is independent of the type and the size of the filler. It was observed that the filler contents in the polypropylene-nanocomposites depend on the catalysts system used. The morphology results using TEM revealed that the nanoparticles are uniformly distributed in the isotactic polypropylene matrix. Additionally, the melting points, glass temperatures and crystallization temperatures changed with the amount of the fillers.  相似文献   

5.
Synthesis and characterization of a novel carbazole‐based monomer, 9‐(bicyclo[2.2.1]hept‐5‐en‐2‐ylmethyl)‐9H‐carbazole (BHMCZ) and its copolymerization with ethylene by using two metallocene/MAO catalyst systems are presented. The monomer was characterized by means of NMR spectroscopy, MS and elementary analysis. Copolymerization studies were conducted using [Ph2C(Ind)(Cp)ZrCl2] and [Ph2C(Flu)(Cp)ZrCl2] catalysts. The [Ph2C(Ind)(Cp)ZrCl2] catalyst gave a copolymer containing as much as 4.6 mol‐% of BHMCZ. Polymers were characterized using NMR spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC).  相似文献   

6.
Meso-[Me2Si(2-Me-4,6-iPr2Ind)2ZrCl2 was synthesized in a pure form and used as catalyst for the copolymerization of ethene and α-olefins. The results are compared with polymers obtained by C1-symmetric metallocenes and constrained geometry catalysts. The activity of the meso form is remarkable high and reaches more than 100000 kg polymer/mol Zr · h. The ligand structure has large influence on the incorporation of 1-octene forming thermoplastics (LLDPE) and thermoplastic elastomers (POE).  相似文献   

7.
A study was made on the effects of polymerization conditions on the long‐chain branching, molecular weight, and end‐group types of polyethene produced with the metallocene‐catalyst systems Et[Ind]2ZrCl2/MAO, Et[IndH4]2ZrCl2/MAO, and (n‐BuCp)2ZrCl2/MAO. Long‐chain branching in the polyethenes, as measured by dynamic rheometry, depended heavily on the catalyst and polymerization conditions. In a semibatch flow reactor, the level of branching in the polyethenes produced with Et[Ind]2ZrCl2/MAO increased as the ethene concentration decreased or the polymerization time increased. The introduction of hydrogen or comonomer suppressed branching. Under similar polymerization conditions, the two other catalyst systems, (n‐BuCp)2ZrCl2/MAO and Et[IndH4]2ZrCl2/MAO, produced linear or only slightly branched polyethene. On the basis of an end‐group analysis by FTIR and molecular weight analysis by GPC, we concluded that a chain transfer to ethene was the prevailing termination mechanism with Et[Ind]2ZrCl2/MAO at 80 °C in toluene. For the other catalyst systems, β‐H elimination dominated at low ethene concentrations. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 376–388, 2000  相似文献   

8.
Using two different zirconocene/MAO catalyst systems, propene was copolymerized with the comonomers 2‐(9‐decene‐1‐yl)‐1,3‐oxazoline and 2‐(4‐(10‐undecene‐1‐oxo)phenyl)‐1,3‐oxazoline, respectively. The catalysts used were rac‐Et[Ind]2ZrCl2 and rac‐Me2Si[2‐Me‐4, 5‐BenzInd]2ZrCl2. Up to 0.53 mol‐% oxazoline could be incorporated into polypropene. Oxazoline content, molecular weight, degree of isotacticity and melting behavior were dependent on the catalyst system, comonomer structure and comonomer concentration in the feed.  相似文献   

9.
The copolymerization of propene and norbornene with the isospecific metallocene catalyst dimethylsilylenebis(η5-inden-1-yl)zirconium dichloride/methylaluminoxane ((CH3)2Si[Ind]2ZrCl2/MAO) was investigated. Because of the surprisingly high reactivity of the cyclic olefin copolymers with a norbornene content of 11 mol-% up to 98 mol-% were synthesized. The resulting copolymers are amorphous. The glass transition temperatures studied by differential scanning calorimetry measurements increase with rising norbornene content in the copolymer. High glass transition temperatures of Tg > 240°C were found for the copolymers with the highest content of norbornene.  相似文献   

10.
The isoselective propene polymerization using the supported catalyst SiO2/MAO/Me2Si(2-Me-Benz[e]Ind)2ZrCl2/AlR3 was investigated and compared with propene polymerization using the corresponding homogeneous catalyst system. The influence of propene concentration, polymerization medium, temperature, comonomer, and external aluminium alkyls on polymerization kinetics and polypropene properties such as molecular mass, stereo- and regioselectivity, morphology, and bulk density was studied. © 1997 John Wiley & Sons, Inc.  相似文献   

11.
Vinylcyclohexane (VCH) was copolymerized with ethene and propene using methylaluminoxane‐activated metallocene catalysts. The catalyst precursor for the ethene copolymerization was rac‐ethylenebis(indenyl)ZrCl2 ( 1 ). Propene copolymerizations were further studied with Cs‐symmetric isopropylidene(cyclopentadienyl)(fluorenyl)ZrCl2 ( 2 ), C1‐symmetric ethylene(1‐indenyl‐2‐phenyl‐2‐fluorenyl)ZrCl2 ( 3 ), and “meso”‐dimethylsilyl[3‐benzylindenyl)(2‐methylbenz[e]indenyl)]ZrCl2 ( 4 ). Catalyst 1 produced a random ethene–VCH copolymer with very high activity and moderate VCH incorporation. The highest comonomer content in the copolymer was 3.5 mol %. Catalysts 1 and 4 produced poly(propene‐co‐vinylcyclohexane) with moderate to good activities [up to 4900 and 15,400 kg of polymer/(mol of catalyst × h) for 1 and 4 , respectively] under similar reaction conditions but with fairly low comonomer contents (up to 1.0 and 2.0% for 1 and 4 , respectively). Catalysts 2 and 3 , both bearing a fluorenyl moiety, gave propene–VCH copolymers with only negligible amounts of the comonomer. The homopolymerization of VCH was performed with 1 as a reference, and low‐molar‐mass isotactic polyvinylcyclohexane with a low activity was obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6569–6574, 2006  相似文献   

12.
Summary: The metallocenes rac‐C2H4(Ind)2ZrCl2 ( 1 ), rac‐Me2Si(Ind)2ZrCl2 ( 2 ), and rac‐Me2Si(2‐Me‐benz[e]Ind)2ZrCl2 ( 3 ) efficiently copolymerize propene and 5‐vinyl‐2‐norbornene (VNB). 1 and 2 give a high VNB content and high productivities, whereas 3 gives moderate incorporation. Surprisingly, precatalysts 1 and 2 , which have very closely related structures, showed very different reactivities toward VNB, with 1 having a greater affinity for VNB than for propene. The copolymers are quantitatively converted into polyolefins with polar functionalities.

  相似文献   


13.
Sterically hindered olefins like norbornene, dimethanooctahydronaphthalene (DMON), 4‐methylpentene, and 3‐methylbutene can be copolymerised with ethene by metallocene/MAO catalysts. Different C2‐, Cs‐ and C1‐symmetric and meso‐zirconocenes were used. Only isolated and alternating norbornene sequences but no norbornene blocks are formed by substituted [Me2C(Cp‐R)(Flu)]ZrCl2 catalysts. The alternating microstructure leads to melting points up to 270°C for ethene‐norbornene copolymers and up to 380°C for the semi‐crystalline alternating copolymer of ethene and DMON. Other sterically hindered olefins such as 3‐methylpentene build more blocky structures with high glass transition temperatures. The mechanism for the insertion reaction of the different catalysts is discussed.  相似文献   

14.
Dual-site ethene/1-hexene copolymerizations with MAO-activated (1,2,4-Me3Cp)2ZrCl2 and (Me5Cp)2ZrCl2 catalysts were performed. Copolymers with narrow molecular weight distributions and bimodal short chain branching distributions could be produced. The combined catalyst system demonstrates a number of discrepancies from an expected average behavior of the individual sites. Dual-site (1,2,4-Me3Cp)2ZrCl2/(Me5Cp)2ZrCl2 systems produce copolymers with lower incorporation than expected. Clear evidences for relative activity enhancement of the (Me5Cp)2ZrCl2 catalyst in the mixture were observed in melting endotherms and Crystaf profiles. Molecular weights obtained by the mixture were higher than for any of the individual catalysts. A similar effect is observed for a dual-site system of the (1,2,4-Me3Cp)2ZrCl2 catalyst together with the Me4Si2(Me4Cp)2ZrCl2 catalyst as an alternative to (Me5Cp)2ZrCl2.  相似文献   

15.
The main focus of this study is the ethylene/hexene copolymerization with the silica supported metallocene SiO2/MAO/rac‐Me2Si[2‐Me‐4‐Ph‐Ind]2ZrCl2. Polymerizations were carried out in toluene at a reaction temperature of 40°C–60°C and the cocatalyst used was triisobutylaluminium (TIBA). The kinetics of the copolymerization reactions (reactivity ratios rE/H, monomer consumption during reaction) were investigated and molecular weights Mw, molecular weight distributions MWD and melting points Tm were determined. A schematic model for the blend formation observed was developed that based on a filtration effect of monomers by the copolymer shell around the catalyst pellet.  相似文献   

16.
Both the rac- and meso-dinuclear ansa-zirconocene catalysts (μ-C12H8{[SiPh(Ind)2]ZrCl2}2) were prepared by a coupling reaction between 2 equiv of diindenylphenylchlorosilane (rac- and meso-isomers) and 1 equiv of p-dilithiobiphenyl in diethyl ether at −80°C, followed by a successive reaction with ZrCl4 · 2THF in THF at −78°C. Polymerizations of ethene and propene were conducted in a 1 dm3 high-pressure glass reactor equipped with a mechanical stirrer at 60, 80, 100, 120, and 150°C using methylalumoxane (MAO) as cocatalyst and toluene or decahydronaphthalene as the solvent. Copolymerization of ethene and 1-octene was also checked in brief. For ethene polymerization, the meso-catalyst was found to be more active, which displayed an extremely high activity to give linear polyethene with a high molecular weight and a narrow molar mass distribution (MMD). The apparent activity increased monotonously with rising polymerization temperature from 60°C up to 150°C, indicating that the active species are stable even at a high temperature. On the other hand, both the rac- and meso-catalysts showed very poor activities for propene polymerization. However, copolymerization of ethene and 1-octene proceeded at a high speed. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2269–2274, 1998  相似文献   

17.
The copolymers of ethylene with 5-ethylidene-2-norbornene containing 10–65% of the cyclic comonomer have been prepared with the use of three ansa-metallocene catalysts, namely, Et[Ind]2ZrCl2-methylaluminoxane, Et[IndH4]2ZrCl2-methylaluminoxane, and Me2Si[Ind]2ZrCl2-methylaluminoxane. Side groups >C=CH-CH3 capable of participation in the ozonolysis reaction have been incorporated into polymer chains via the copolymerization of ethylene with the cyclic comonomer. As evidenced by DSC, and X-ray diffraction, and very cold neutron scattering measurements of the supramolecular structure of the copolymers, the enrichment of the copolymer with the cyclic comonomer causes transformation of the ethylene-5-ethylidene-2-norbornene copolymer from the semicrystalline state to the amorphous state. This effect is accompanied by an increase in the density and optical transparency of the material and a rise in its glass transition temperature. Among the copolymers under study, the highest T g (83°C) is exhibited by the copolymer synthesized with the Et[Ind]2ZrCl2-methylaluminoxane catalyst and containing 30 mol % 5-ethylidene-2-norbornene.  相似文献   

18.
We investigated the ethylene copolymerization by utilizing Me2Si(Ind)2ZrCl2/MAO and Me2Si(Ind)2ZrCl2/MAO/SiO2 with 10-undecene-1-oxytrimethylsilane and 10-undecene-1-oxytriisopropylsilane and the ethylene copolymerization by using iPr(CpInd)ZrCl2/MAO and iPr(CpInd)ZrCl2/MAO/SiO2 with 5-norbornene-2-methyleneoxytrimethylsilane and 5-norbornene-2-methyleneoxytriisopropylsilane. The trimethylsilyl (TMS) protecting group could not prevent the catalyst deactivation caused by the addition of the polar comonomer. In contrast to that, good catalyst activities and comonomer contents were obtained with the triisopropylsilyl (TIPS) protected monomer. The homopolymerization of 10-undecene-1-OTIPS was carried out with Me2Si(Ind)2ZrCl2/MAO.  相似文献   

19.
Ethene homopolymerization and copolymerization with 1‐hexene were performed with three new tetramethyldisilylene‐bridged zirconocene catalysts with 2‐indenyl ligand ( A ), 2‐tetrahydroindenyl ligand ( B ), and tetramethyl‐cyclopentadienyl ligand ( C ) and with methylaluminoxane as a cocatalyst. Catalysts A and B showed substantial comonomer incorporation, resulting in a copolymer melting temperature more than 20° lower than that of the corresponding homopolymer. In contrast, catalyst C produced a copolymer with a low 1‐hexene content and a high melting temperature. The reduction in the molecular weight with 1‐hexene addition also correlated well with the comonomer incorporation. For all three catalysts, the homopolymer and copolymer unsaturations indicated frequent chain termination after 1‐hexene insertion and a high degree of chain‐end isomerization during the homopolymerization of ethene. The chain transfer to Al in the cocatalyst also appeared to be important. The comonomer response could be correlated with the structural properties of the catalyst, as derived from quantum chemical calculations. A linear model, calibrated against recent experiments with unbridged (MenC5H5?n)2ZrCl2 catalysts, suggested that the low comonomer incorporation obtained with catalyst C was caused partly by a narrow opening angle between the aromatic ligands and partly by steric hindrance in the transition state of comonomer insertion. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1622–1631, 2003  相似文献   

20.
Zirconium‐chelate and mono‐η‐cyclopentadienyl zirconium‐chelate complexes were tested as ethene and propene polymerization catalysts in combination with methylalumoxane (MAO) as a co‐catalyst: in particular (acac) nZrCl4−n (1a–c) (acac = acetylacetonato), (dbm) nZrCl4−n (2a–2c) (dbm = dibenzoylmethanato = 1,3‐diphenylpropanedionato) (n = 2–4) and (dbm)2ZrCl2(thf) (3) (thf = tetrahydrofuran), (η‐C5H5)[H2B (C3H3N2)2]ZrCl2 (4), (η‐C5H5)[HB (C3H3N2)3] ZrCl2 (5) and (η‐C5H5)[(Me3SiN)2 CPh]ZrCl2 (6). Polymerization productivities comparable with the (η‐C5H5)2ZrCl2 reference system were observed towards ethene for all of the above complexes. In addition, compound 6 showed some minor polymerization activity towards propene. Ethylalumoxane or isobutylalumoxane did not exhibit a co‐catalytic activity for these chelate complexes; in combination with MAO these higher alumoxanes were even found to be deactivating 91Zr NMR data are reported for 1b, 1c, 4 and 5. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号