首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to promote better understanding of the structure‐mechanical properties relationships of filled thermoplastic compounds, the molecular orientation and the degree of crystallinity of injection molded talc‐filled isotactic polypropylene (PP) composites were investigated by X‐ray pole figures and wide‐angle X‐ray diffraction (WAXD). The usual orientation of the filler particles, where the plate planes of talc particles are oriented parallel to the surface of injection molding and influence the orientation of the α‐PP crystallites was observed. The PP crystallites show bimodal orientation in which the c‐ and a*‐axes are mixed oriented to the longitudinal direction (LD) and the b‐axis is oriented to the normal direction (ND). It was found that the preferential b‐axis orientation of PP crystallites increases significantly in the presence of talc particles up to 20 wt% in the composites and then levels‐off at higher filler content. WAXD measurements of the degree of crystallinity through the thickness of injection molded PP/talc composites indicated an increasing gradient of PP matrix crystallinity content from the core to the skin layers of the molded plaques. Also, the bulk PP crystallinity content of the composites, as determined by DSC measurements, increased with talc filler concentration. The bulk crystallinity content of PP matrix and the orientation behavior of the matrix PP crystallites and that of the talc particles in composites are influenced by the presence of the filler content and these three composite's microstructure modification factors influence significantly the flexural moduli and the mechanical stiffness anisotropy data (ELD/ETD) of the analyzed PP/talc composites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
超细CaCO_3的粒子尺寸对PP结晶行为的影响   总被引:14,自引:0,他引:14  
The effects of CaCO3 on the crystallization behavior of polypropylene (PP) were studied by means of DSC and WAXD.The average sizes of the CaCO3 powders used were 0.1μm (UC) and 0.5μm (GC),respectively.The PP/CaCO3 composites at compositions of 1phr and 10 phr were investigated.The results showed that the addition of CaCO3 reduced the supercooling,the rate of nucleation and the overall rate of crystallization (except for the 10phr UC/PP sample).The crystallinity of PP was increased and the size distribution of the crystallites of α-PP was broadened.On the other hand,the crystallization rate of 10phr UC/PP is 1.5 times higher than that of neat PP.It has an overall rate of crystallization 2 times as much as that of the neat PP and has the maximum crystallinity.The sizes of crystallites and the unit cell parameters of α-PP were varied by the addition of CaCO3.β-PP was formed by addition of GC and was not detected by addition of UC.The differences of crystallization behaviors of PP might be attributed to the combined effects of the content and size of CaCO3 filled.  相似文献   

3.
Aluminum hydroxide-filled polypropylene composites generally form α-crystal due to the strong heterogenous α-nucleation of filler. In order to utilize β-crystal PP with high toughness to prepare aluminum hydroxide-filled PP composites, the aluminum hydroxide-filled PP composites nucleated by calcium pimelate and PP composites filled by calcium pimelate-supported aluminum hydroxide were fabricated. The crystallization and melting behavior of filled composites were compared by differential scanning calorimetry. The influence of aluminum hydroxide contents on the β-crystal content in the filled PP composites was discussed. It is a novel effective method to prepare aluminum hydroxide-filled β-PP composites with calcium pimelate-nucleated aluminum hydroxide.  相似文献   

4.
The orientation of crystallites in a bundle of parallel cotton fibers was studied by x-ray diffraction. The intensity distributions of the 101 and 002 diffraction rings showed the distributions of (101) and (002) planes to be identical within the limits of accuracy. Therefore, the crystallites in the cotton fibers very likely had random orientation about their long axes. The orientation distribution of these axes was calculated by using the intensity distribution of the 002 diffraction ring. The cylindrically symmetrical density distribution J(β) thus obtained was multiplied by sin β to obtain the distribution of relative numbers of crystallites at given angles β to the long axis of the fiber. The average 〈β〉 was found to be in agreement with the value of 〈sin2β〉 measured from the 002 diffraction ring. The intensity distributions on the 101 and 002 diffraction rings showed small fluctuations. These fluctuations appeared much stronger in the J(β) and sin β J(β) distributions, indicating clear discontinuities in the pitch angle distribution.  相似文献   

5.
The effect of styrene-(ethylene-co-butylene)-styrene triblock copolymer (SEBS) on the mechanical, thermal and morphological properties of polypropylene (PP) composites filled with nanosilica particles is investigated. A simultaneous increase of all tensile characteristics is observed in PP/nanosilica composites without SEBS and containing 5%SEBS and a large plastic deformation in the nanocomposite with 10%SEBS. Different amounts of β-PP are detected by X-ray diffraction analysis and the calculated K-values correlate well with differential scanning calorimetry results. Quantitative mechanical characterization of nanocomposites is performed at nanolevel, using peak force QNM. This AFM technique allows the detection of nanosilica particles and SEBS domains at the surface of samples and gives indications of local interactions between nanosilica and the matrix from the correlation of modulus and adhesion maps, and the increased local values of elastic modulus on extended areas around nanoparticles.  相似文献   

6.
The aim of this study was to investigate the effects of maleic anhydride-graft-polypropylene (MA-g-PP) as a compatibilizer and wood fiber as a lignocellulosic filler on technical properties of poly(l-lactic acid) (PLLA)/polypropylene composites. The obtained composites were characterized through mechanical tests, thermogravimetric analysis, differential scanning analyzer, and chemical analysis via Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). The obtained results showed that the mechanical properties of the composites containing MA-g-PP were higher than those of the composites without MA-g-PP. SEM images revealed that the morphological properties of the composites including PP and PLLA were improved. The chemical interactions between PP and PLLA were demonstrated through FTIR results of composites with MA-g-PP.  相似文献   

7.
Nylon 6-clay hybrid (NCH) is a molecular composite of Nylon 6 and uniformly dispersed silicate monolayers of montmorillonite. In this study the preferred orientation of montmorillonite and Nylon-6 crystallites in a thick (3 mm) injection-molded bar of NCH has been investigated using x-ray diffraction and electron micrography (TEM). It is clear that this bar has a triple layer structure consisting of surface, intermediate, and middle layers which have different preferred orientation. In the surface layer both the silicate monolayers and the chain axes of Nylon-6 crystallites are parallel to the bar surface though the latter are randomly oriented within the plane. In the intermediate layer the silicate monolayers remain parallel to the bar surface but the Nylon-6 crystallites rotate by 90° so that the chain axes would be perpendicular to the bar surface or the silicate monolayers. In the middle layer the silicate monolayers are randomly oriented around the flow axis of the NCH bar while remaining parallel to it, and the Nylon crystallites are randomly oriented around the flow axis while keeping their chain axes perpendicular to the silicate monolayers. It may be concluded that such preferred orientation of Nylon 6 crystallites is induced by the clay because the crystallites in the pure Nylon 6 bar have no preferred orientation. ©1995 John Wiley & Sons, Inc.  相似文献   

8.
The degree of crystallinity, the structure and orientation of crystallites, and the morphology of thin pentacene films grown by vapor deposition in an ultrahigh vacuum environment on polycrystalline copper substrates have been investigated by x-ray diffraction and tapping-mode scanning force microscopy (TM-SFM). Depending on the substrate temperature during deposition, very different results are obtained: While at 77 K a long-range order is missing, the films become crystalline at elevated temperatures. From a high-resolution x-ray-diffraction profile analysis, the volume-weighted size of the crystallites perpendicular to the film surface could be determined. This size of the crystallites increases strongly upon changing temperature between room temperature and 333 K, at which point the size of individual crystallites typically exceeds 100 nm. In this temperature region, three different polymorphs are identified. The vast majority of crystallites have a fiber texture with the (001) net planes parallel to the substrate. In this geometry, the molecules are oriented standing up on the substrate (end-on arrangement). This alignment is remarkably different from that on single-crystalline metal surfaces, indicating that the growth is not epitaxial. Additionally, TM-SFM images show needlelike structures which suggest the presence of at least one additional orientation of crystallites (flat-on or edge-on). These results indicate that properties of thin crystalline pentacene films prepared on technologically relevant polycrystalline metal substrates for fast electronic applications may be compromised by the simultaneous presence of different local molecular aggregation states at all temperatures.  相似文献   

9.
Microwave heating has several advantages over traditional methods of heating, including rapid and uniform heating, greater penetration depth of heat into material, lower power costs and selective heating within the material and so on. In this paper, effects of microwave heating on the properties of high‐density polyethylene/carbon black (HDPE/CB) composites were studied. The results show that the HDPE/CB composites can be heated via microwave irradiation, and composites with different CB concentration exhibit different microwave heatability. The 20 wt% CB composites have the most rapid heating rate, and its temperature reaches 78°C after 10 sec, and 159°C after 150 sec, respectively. Meanwhile, microwave heating improves the mechanical properties of HDPE/CB composites. Scanning Electron Microscopy (SEM) analysis shows a better combination between CB particles and HDPE after microwave irradiation. Furthermore, selective heating of microwave was used to prepare a novel oriented structure, which the core layer has preferential orientation and the surface layer has little orientation. Characterization of the novel oriented structure was also studied. Wide angle X‐ray diffraction (WAXD) analysis of 25 wt% CB composites with the novel oriented structure shows that the diffraction peaks of the surface layer are obviously weaker than those of the core layer, which indicates that orientation in the core layer is more intensive than that in the surface layer. The novel oriented structure is different to the traditional skin‐core structure, in which the surface layer has preferential orientation and the core layer has little orientation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A procedure of the X-ray diffraction study of thin layers using a single crystal X-ray diffractometer equipped with a microfocus tube is described. It is demonstrated that α-cobalt phthalocyanine layers deposited by thermal vacuum evaporation onto polished surfaces of substrates (glass, quartz) have a perfectly oriented polycrystalline structure. The (00l) planes of all crystallites are oriented along the surface of the substrate. The structural organization of layers is analyzed.  相似文献   

11.
张杰 《高分子科学》2016,34(8):1001-1013
In this article, crystalline morphology and molecular orientation of isotactic polypropylene (iPP), random copolymerized polypropylene (co-PP) and β-nucleating agent (β-NA) composites prepared by pressure vibration injection molding (PVIM) have been investigated via polarized light microscopy, scanning electron microscopy, wide-angle X-ray diffraction and differential scanning calorimetry. Results demonstrated that the interaction between co-PP and iPP molecular chains was beneficial for the mechanical improvement and the introduction of β-NA further improved the toughness of iPP. In addition, after applying the pressure vibration injection molding (PVIM) technology, the shear layer thickness increased remarkably and the tensile strength improved consequently. Thus, the strength and toughness of iPP/co-PP/β-NA composites prepared by PVIM were simultaneously improved compared to those of the pure iPP prepared by conventional injection molding (CIM): the impact toughness was increased by five times and tensile strength was increased by 9 MPa. This work provided a new method to further enhance the properties of iPP/co-PP composites through dynamic processing strategy.  相似文献   

12.
Samples of isotactic polypropylene (PP) were zone-solidified in temperature gradients up to 300°C/cm at growth rates down to 3 μm/min. Oriented α-type spherulites were obtained only by nucleation. While β nucleation is extremely rare, the β phase is easily initiated by growth transformations along the oriented α front. Since the β phase was found to grow considerably faster than the α phase, the α-to-β transformation points diverge across the sample, interrupting growth of the oriented α fibrils. This causes subsequent nucleation to yield teardrop-shaped α spherulites. Differential scanning calorimetry (DSC) studies of zone-solidified PP show the β-phase to be favored by slow growth rates, high temperature gradients, and large degrees of superheat in the melt—all of which tend to suppress nucleation. Differential thermograms of largely β-PP obtained at a heating rate of 1°C/min show the actual melting and recrystallization of the β spherulites into the α form.  相似文献   

13.
The changes in crystallite orientation during melting of oriented ultra-high-molecular-weight polyethylene (UHMW PE) were investigated by means of wide-angle X-ray scattering. The orientation distribution of crystallites in drawn UHMW PE is composed of two components differing in width. The narrow and broad components revealed in this study indicate the existence of two classes of crystallites with different orientability. Some of the crystallites are oriented almost perfectly even at low-draw ratios, while the others do not orient so effectively. The analysis of melting behaviour of such a texture composed of orthorhombic crystals indicates that highly oriented crystallites are formed by taut molecules and transform first to the hexagonal phase, while the molecules constituting low-oriented crystallites melt directly to the typical amorphous phase. The increase in orientation of highly oriented crystallites during their partial melting, observed in the samples kept at constant length and even those allowed to shrink under constant load, can be explained by the kinetic factor proposed by Ziabicki. Received: 11 September 1998 Accepted in revised form: 18 February 1999  相似文献   

14.
Scanning tunneling microscopy (STM) and noncontact tapping mode atomic force microscopy (AFM) have been employed to study on a local scale the structural and, for the first time, the chemical changes of carbon black (CB) particles following plasma oxidation. STM imaging of the pristine, untreated particles revealed a relatively ordered structure of tiny crystallites with a few amorphous regions. After plasma treatment, the crystallites were no longer observed and the CB particle surface exhibited a noticeable and ubiquitous increase in atomic-scale disorder. Phase contrast images obtained with noncontact tapping mode AFM indicated that the untreated CB particles were essentially hydrophobic as a pristine basal surface of graphite, but with occasional hydrophilic patches. By contrast, their plasma-treated counterparts displayed enhanced hydrophilicity as a result of the introduction of oxygen onto the CB surface, the presence of which was evidenced by X-ray photoelectron spectroscopy, but most significantly, such enhancement was observed to be quite uniform at a local scale of individual particles. The possibility of investigating on a very local scale the chemical behavior of oxidized CB particles should be useful for the control and optimization of their dispersion properties in different systems.  相似文献   

15.
A wide-angle x-ray diffraction (WAXD) study of the development of molecular orientation in the crystalline phase of ultra-high–molecular weight polyethylene films prepared by the gelation–crystallization method is presented. WAXD scans of the undrawn films show that the lamellae are oriented in the plane of the films. Upon drawing at 130°C, the orientation of the molecular chains changes from the direction normal to the film surface (ND) to the elongation direction. The decrease of the 200/020 intensity ratio at low draw ration (λ <10) indicates that double orientation develops during the transformation from the lamellar to the fibrillar morphology, with the a-axis oriented parallel to ND. The orientation distributions of the 110, 200, 020, and 002 planes of the orthorhombic unit cell of polyethylene were studied and characterized by the coefficients of a Legendre polynomial series. At a draw ratio of 4.5, the second-order coefficient, 〈P2(cos χ〉, already gets close to its limiting value, but it is shown that higher order coefficients of the polynomial series can be used to describe the evolution of the orentation, even up to λ = 50. The coefficients relative to the molecular chain orientation, 〈Pn(cos χ)〉c, can be calculated from different crystalline reflections. Curve-fitting calculations were made in order to improve the correlation between the results obtained from the orientation distribution of the 110, 020, and 002 planes. A Person VII function was found to give a better fit of the experimental curves than Gaussian or Lorentzian equations. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
A serial of β-nucleated polypropylene (β-PP)/nano-calcium carbonate (nano-CaCO3)/ short poly(ethylene-terephthalate) (PET) fiber composites were prepared using extrusion blending. Maleic anhydride grafted PP (PP-g-MA) was used to modify the compatibility. The relationships among components, structure, and properties of the PP composites were studied. The results show that adding nano-CaCO3 improved the mechanical properties of the materials. Adding PET fiber increased the rigidity and toughness but the tensile strength decreased. PP-g-MA modified the compatibility of the components of the composites. Both PET fiber and nano-CaCO3 had nucleation effect on the PP crystallization and slightly induced the formation of β crystals. Ternary β-PP/nano-CaCO3/PET fiber composites contained high β-crystal content, and the compatibilizer exhibited synergy effect with β nucleating agent to further increase the β-crystal content in the blends. Mo’s method could satisfactorily describe the nonisothermal crystallization behavior of ternary composites, whereas Jeziorny and Ozawa methods failed to do the same ideally.  相似文献   

17.
We report on the growth of palladium nanoparticles on the basal plane of as‐cleaved highly oriented pyrolytic graphite (HOPG) samples, and on CO2 ion sputtered nanostructured HOPG surfaces. The morphology of Pd nanostructures grown at room temperature is investigated by scanning tunneling microscopy (STM). The STM observations indicate that the morphology of the Pd films is strongly dependent on the HOPG surface. Stabilized Pd particles only form on the sputtered surface, while ramified Pd particles decorate the clean HOPG terraces. The prestructuring of HOPG surface leads to a selective location of particles at the rim of the nanopits generated by the CO2 ion sputtering and annealing of the surface. The correlation between size, form, density, spatial distribution of the Pd nanoparticles and the quantity of metal added on surface is discussed. We also describe trench channeling of graphite or graphene basal planes by means of Pd nanoparticles in an ambient environment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Novel biphasic structured in situ silica filled natural rubber composites were focused on their strain-induced crystallization (SIC) behavior from the viewpoint of morphology. The composites were prepared by in situ silica filling in natural rubber (NR) latex using a sol–gel reaction of tetraethoxysilane. Simultaneous time-resolved wide-angle X-ray diffraction and tensile measurements revealed a relationship between the characteristic morphology and tensile stress–strain properties of the composites associating with the SIC. Results showed stepwise SIC behaviors of NR-based composites for the first time. Pure rubber phases in the biphasic structure were found to afford highly oriented amorphous segments and oriented crystallites. The generated crystallites worked as reinforcing fillers together with the in situ silica to result in high tensile stresses of the composites. The observed characteristics are useful for understanding a role of filler network in the reinforcement of rubber.  相似文献   

19.
A complex orientational morphology is observed when n-alkane thin films are vapor deposited on highly oriented pyrolytic graphite surfaces. Substrate temperature can be used to tune the orientation and morphology of n-alkane thin films. The molecular orientation changes from lateral to normal to the surface when the substrate temperature is raised sufficiently. Under specific substrate temperature conditions, the n-alkane molecules are aligned in the plane of the sample surface, in directions reflecting the 6-fold symmetry of the graphite substrate. A series of different morphologies, from uniform thin films to oriented bars, are observed as a function of chain length and substrate temperature. The systematic evolution of these oriented morphologies is mapped as a function of deposition conditions, and the kinetic and thermodynamic factors that govern the formation of different in-plane and normal domains are considered.  相似文献   

20.
PP/EPDM/CaCO_3三元复合材料的相结构及力学性能研究   总被引:4,自引:0,他引:4  
朱德钦  生瑜  王剑峰 《高分子学报》2008,(11):1061-1067
采用以化学键合方式在CaCO3表面包覆上聚丙烯蜡和将改性后的CaCO3先与EPDM复合、再与PP复合的工艺,制备PP/EPDM/CaCO3三元复合材料,以期在PP基体材料中得到EPDM包裹CaCO3的相结构.通过测量三元复合体系中各组分的表面张力,计算各可能组分对之间的界面张力和黏结功,分析三元复合体系中可能的相结构.热力学计算结果表明,三元复合体系中既存在以EPDM为壳、CaCO3为核的"核壳结构",又存在CaCO3与EPDM各自独立分散在PP基体中的结构.电镜照片进一步揭示,在PP/EPDM/改性CaCO3三元复合体系与PP/EPDM/未改性CaCO3三元复合体系中,这两种相结构的比例是不同的,在前者中以核壳结构为主.CaCO3表面性质的不同是产生这一差别的原因.由于这一结构差别的存在,PP/EPDM/改性CaCO3三元复合体系比PP/EPDM/未改性CaCO3三元复合体系具有更好的力学性能.当EPDM用量为8 phr、改性CaCO3用量为15 phr时,三元复合体系的冲击强度达14.25 kJ/m2,是纯PP的3.17倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号