首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel cellulose solvent, 1.5 M NaOH/0.65 M thiourea aqueous solution, was used to dissolve cotton linters having a molecular weight of 10.1 × 104 to prepare cellulose solution. Regenerated cellulose (RC) films were obtained from the cellulose solution by coagulating with sulfuric acid (H2SO4) aqueous solution with a concentration from 2 to 30 wt %. Solubility of cellulose, structure, and mechanical properties of the RC films were examined by infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, 13C NMR, and tensile tests. 13C NMR analysis indicated that the novel solvent of cellulose is a nonderivative aqueous solution system. The presence of thiourea enhanced significantly the solubility of cellulose in NaOH aqueous solution and reduced the formation of cellulose gel; as a result, thiourea prevented the association between cellulose molecules, leading to the solvation of cellulose. The RC film obtained by coagulating with 5 wt % H2SO4 aqueous solution for 5 min exhibited higher mechanical properties than that with other H2SO4 concentrations and a homogenous porous structure with a mean pore size of 186 nm for free surface in the wet state. The RC film plasticized with 10% glycerin for 5 min had a tensile strength of 107 MPa and breaking elongation of 10%, and about 1% glycerin in the RC film plays an important role in the enhancement of the mechanical properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1521–1529, 2002  相似文献   

2.
Blend membranes (RCF1) were prepared from mixture solution of cellulose and silk fibroin (SF) in cuoxam by coagulating with acetone–acetic acid (4:1 by volume). The blend membranes were subjected to post-treatment with 10% NaOH aqueous solution, and their structure and properties were characterized by FT-IR, X-ray diffraction, DSC, SEM and DMTA. In previous work, cellulose/SF blend membranes (RCF2) prepared by coagulating with 10% NaOH aqueous solution formed a microporous structure, in which the SF as a pore former was almost completely removed from the membrane. However, when the blend membranes RCF1 were immersed in 10% NaOH aqueous solution for post-treatment, a strong hydrogen bonding between cellulose and SF inhibited the removal of SF. Although alkali is a good solvent for SF, the blend membranes RCF1 such obtained from cellulose and SF were alkali resistant. The crystallinity and the mean pore size of the blend membranes slightly decreased with increasing post-treatment time. This work provided a cellulose/silk blend membrane, which can be used under alkaline medium.  相似文献   

3.
Cellulose was dissolved in 6 wt % NaOH/4 wt % urea aqueous solution, which was proven by a 13C NMR spectrum to be a direct solvent of cellulose rather than a derivative aqueous solution system. Dilute solution behavior of cellulose in a NaOH/urea aqueous solution system was examined by laser light scattering and viscometry. The Mark–Houwink equation for cellulose in 6 wt % NaOH/4 wt % urea aqueous solution at 25 °C was [η] = 2.45 × 10?2 weight‐average molecular weight (Mw)0.815 (mL g?1) in the Mw region from 3.2 × 104 to 12.9 × 104. The persistence length (q), molar mass per unit contour length (ML), and characteristic ratio (C) of cellulose in the dilute solution were 6.0 nm, 350 nm?1, and 20.9, respectively, which agreed with the Yamakawa–Fujii theory of the wormlike chain. The results indicated that the cellulose molecules exist as semiflexible chains in the aqueous solution and were more extended than in cadoxen. This work provided a novel, simple, and nonpollution solvent system that can be used to investigate the dilute solution properties and molecular weight of cellulose. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 347–353, 2004  相似文献   

4.
In an earlier work we reported the discovery of cellulose as a smart material that can be used in sensors and actuators. While the cellulose-based Electro-Active Paper (EAPap) actuator has many merits – lightweight, dry condition, biodegradability, sustainability, large displacement output and low actuation voltage – its performance is sensitive to humidity. We report here on an EAPap made with a cellulose and sodium alginate that produces its maximum displacement at a lower humidity level than the earlier one. To fabricate this EAPap, we dissolved cellulose fibers into a aqueous solution of NaOH/urea. Sodium alginate (0, 5 or 10% by weight) was then added to this cellulose solution. The solution was cast into a sheet and hydrolyzed to form a wet cellulose-sodium alginate blend film. After drying, a bending EAPap actuator was made by depositing thin gold electrodes on both sides of it. The performance of the EAPap actuator was then evaluated in terms of free displacement and blocked force with respect to the actuation frequency, activation voltage and content of sodium alginate. The actuation principle is also discussed.  相似文献   

5.
Regenerated cellulose (RC) membranes were prepared from cellulose carbamate—NaOH/ZnO aqueous solutions by coagulating with H2SO4 solution. Structure, morphology and properties of the membranes were investigated by using scanning electron micrograph (SEM), X-ray diffraction, Fourier transform infrared spectroscopy, flow rate method, and tensile testing. The results from SEM and water permeability revealed that the pore size and water permeability of the membranes in wet state changed drastically as a function of the concentration of H2SO4 and coagulation temperature, whereas they hardly changed with the coagulation time. RC membranes coagulated with the relatively dilute H2SO4 solution at relatively low temperature exhibited better mechanical properties. This work provided a promising way to prepare cellulose membranes with different pore sizes and good physical properties.  相似文献   

6.
We successfully synthesized hydroxypropylcellulose (HPC) and methylcellulose (MC) in high yields from cellulose in 6 wt % NaOH/4 wt % urea aqueous solutions at 25 °C. The cellulose derivatives were characterized with NMR, size exclusion chromatography/laser light scattering, gas chromatography (GC), ultraviolet, and solubility measurements in different solvents. According to the results of solution 13C NMR and GC, the individual degree of substitution (DS; i.e., the average number of substituted hydroxyl groups in the monomer unit) at C‐2 hydroxyl groups was slightly higher than the DS values at C‐3 and C‐6 hydroxyl groups for HPC and MC. In comparison with traditional systems, NaOH/urea aqueous solutions were proved to be a stable and more homogeneous reaction medium for preparing cellulose ether with a more uniform microstructure. The low limits for the average number of moles of the substituent groups per monomer unit and the DS value of water‐soluble HPC were 1.03 and 0.85, respectively. MC (DS = 1.48) had good solubility in both water and organic solvents, and the precipitation point occurred at about 67 °C for a 2% (w/v) aqueous solution. In this way, we could provide a simple, pollution‐free, and homogeneous aqueous solution system for synthesizing cellulose ethers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5911–5920, 2004  相似文献   

7.
Nanocomposite films were successfully prepared from cellulose and tourmaline nanocrystals with mean diameters of 70 nm in a 1.5 M NaOH/0.65 M thiourea aqueous solution by coagulation with 5 wt % CaCl2 and then a 3 wt % HCl aqueous solution for 2 min. The structure and properties of the composite films were characterized by X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and tensile testing. The results indicated that the tourmaline nanocrystals were dispersed in a cellulose matrix, maintaining the original structure of the nanocrystals in the composite films. The loss peaks (tan δ) in the DMA spectra and the decomposition temperatures in the DSC curves of the composite films were significantly shifted toward low temperatures, suggesting that the nanocrystals broke the partial intermolecular hydrogen bonds of cellulose, and this led to a reduction in the thermal stability. However, the nanocomposite films exhibited a homogeneous structure and dispersion of the nanocrystals. When the tourmaline content was in the range of 4–8 wt %, the composite films possessed good tensile strength (92–107 MPa) and exhibited obvious antibacterial action against Staphylococcus aureus. This work provides a potential way of preparing functional composite films or fibers from cellulose and nanoinorganic particles with NaOH/thiourea aqueous solutions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 367–373, 2004  相似文献   

8.
再生纤维素/聚乙烯醇共混膜的研究   总被引:3,自引:0,他引:3  
由纤维素铜氨溶液与不同体积比(1-10%)的聚乙烯醇(PVA)水溶液共混制备了一系列再生纤维素共混膜.扫描电镜结果表明PVA含量大于8%时,该共混膜产生明显相分离.当PVA低于5%时,共混膜相容性较好.膜的结晶度,抗张强度,直角撕裂强度,断裂伸长及耐热性均优于单独用钢氨液制备的再生纤维素膜.此外,用流动速率法和超滤法测定了膜的孔径,渗透性及纯水通量,结果表明共混膜的孔性没有明显变化.本文得出:再生纤维素与5%PVA共混能改善力学性能,并且能保持其生物降解性.  相似文献   

9.
We prepared biodegradable poly(ethylene oxide) (PEO)/poly(L ‐lactic acid) (PLLA) graded blends by the dissolution–diffusion process, and discussed the biodegradability and tensile strength of the graded blends by comparing isotropic blend and PLLA only. All the graded blends were degraded more largely than the PLLA only and isotropic blend (PEO: 37.5 wt %), which had the same content as the total content of those graded blends. The graded blend having most excellent wide compositional gradient was degraded most largely with the enzyme. Thus, graded structure of the blends promoted their biodegradabilities large. It was considered that the dissolution of PEO with water increased the surface area attacked by the enzyme, while PEO caught PLLA oligomers to promote the biodegradation of PLLA. Then, the biodegradabilities of the graded blends were suppressed by the increasing crystallinity of PLLA. Furthermore, the strengths of all the graded blends were larger than those of the isotropic blend. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2972–2981, 2007  相似文献   

10.
Cellulose films were successfully prepared from NaOH/urea/zincate aqueous solution pre-cooled to −13 °C by coagulating with 5% H2SO4. The cellulose solution and regenerated cellulose films were characterized with dynamic rheology, ultraviolet–visible spectroscope, scanning electron microscopy, wide angle X-ray diffraction, Fourier transform infrared (FT-IR) spectrometer, thermogravimetry and tensile testing. The results indicated that at higher temperature (above 65 °C) or lower temperature (below −10 °C) or for longer storage time, gels could form in the cellulose dope. However, the cellulose solution remained a liquid state for a long time at 0–10 °C. Moreover, there was an irreversible gelation in the cellulose solution system. The films with cellulose II exhibited better optical transmittance, high thermal stability and tensile strength than that prepared by NaOH/urea aqueous solution without zincate. Therefore, the addition of zincate in the NaOH/urea aqueous system could enhance the cellulose solubility and improve the structure and properties of the regenerated cellulose films.  相似文献   

11.
NaOH/urea aqueous solution is a novel, green solvent for cellulose. To explain why cellulose just be dissolved in this solvent under ?13 °C, we studied and discussed the dissolving process of cellobiose in water, urea solution, NaOH solution and NaOH/urea aqueous solution. Dissolving cellobiose in water and the urea solution absorb heat, which is an entropy-driven process. Dissolving cellobiose in NaOH solution and mixed NaOH/urea solution is exothermic, which is an enthalpy-driven process. OH? plays an important role in the dissolving process by forming a hydrogen-bonding complex. From the thermodynamic point of view, negative entropy can well interpret why cellulose must be dissolved in cold NaOH/urea aqueous solution.  相似文献   

12.
Regenerated cellulose fibers were successfully prepared through dissolving cotton linters in NaOH/thiourea/urea aqueous solution at ?2 °C by a twin-screw extruder and wet-spinning process at varying precipitation and drawing conditions. The dissolution process of an optimized 7 wt% cellulose was controlled by polarizing microscopy and resulted in a transparent and stable cellulose spinning dope. Rheological investigations showed a classical shear thinning behavior of the cellulose/NaOH/thiourea/urea solution and a good stability towards gelation. Moreover, the mechanical properties, microstructures and morphology of the regenerated cellulose fibers were studied extensively by single fiber tensile testing, X-ray diffraction, synchrotron X-ray investigations, birefringence measurements and field-emission scanning electron microscopy. Resulting fibers demonstrated a smooth surface and circular cross-section with homogeneous morphological structure as compared with commercial viscose rayon. At optimized jet stretch ratio, acidic coagulation composition and temperature, the structural features and tensile properties depend first of all on the drawing ratio. In particular the crystallinity and orientation of the novel fibers rise with increasing draw ratio up to a maximum followed by a reduction due to over-drawing and oriented crystallites disruption. The microvoids in the fiber as analysed with SAXS were smaller and more elongated with increasing drawing ratio. Moreover, a higher tensile strength (2.22 cN/dtex) was obtained in the regenerated fiber than that of the viscose rayon (2.13 cN/dtex), indicating higher crystallinity and orientation, as well as more elongated and orientated microvoid in the regenerated fiber. All in all, the novel extruder-based method is beneficial with regard to the dissolution temperature and a simplified production process. Taking into account the reasonable fiber properties from the lab-trials, the suggested dissolution and spinning route may offer some prospects as an alternative cellulose processing route.  相似文献   

13.
A new dissolution method, a two-step process, for cellulose in NaOH/urea aqueous system was investigated with 13C NMR, wide X-ray diffraction (WXRD), and solubility test. The two steps were as follows: (1) formation and swelling of a cellulose–NaOH complex and (2) dissolution of the cellulose–NaOH complex in aqueous urea solution. The dissolution mechanism could be described as strong interaction between cellulose and NaOH occurring in the aqueous system to disrupt the chain packing of original cellulose through the formation of new hydrogen bonds between cellulose and NaOH hydrates, and surrounding the cellulose–NaOH complex with urea hydrates to reduce the aggregation of the cellulose molecules. This leads to the improvement in solubility of the polymer and stability of the cellulose solutions. By using this two-step process, cellulose can be dissolved at 0–5 °C in contrast to the known process that requires −12 °C. Regenerated cellulose (RC) films with good mechanical properties and excellent optical transmittance were prepared successfully from the cellulose solution.  相似文献   

14.
Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions was studied systematically. The dissolution behavior and solubility of cellulose were evaluated by using (13)C NMR, optical microscopy, wide-angle X-ray diffraction (WAXD), FT-IR spectroscopy, DSC, and viscometry. The experiment results revealed that cellulose having viscosity-average molecular weight ((overline) M eta) of 11.4 x 104 and 37.2 x 104 could be dissolved, respectively, in 7% NaOH/12% urea and 4.2% LiOH/12% urea aqueous solutions pre-cooled to -10 degrees C within 2 min, whereas all of them could not be dissolved in KOH/urea aqueous solution. The dissolution power of the solvent systems was in the order of LiOH/urea > NaOH/urea > KOH/urea aqueous solution. The results from DSC and (13)C NMR indicated that LiOH/urea and NaOH/urea aqueous solutions as non-derivatizing solvents broke the intra- and inter-molecular hydrogen bonding of cellulose and prevented the approach toward each other of the cellulose molecules, leading to the good dispersion of cellulose to form an actual solution.  相似文献   

15.
In this study the effect of the mercerization degree on the water retention value (WRV) and tensile properties of compression molded sulphite dissolving pulp was evaluated. The pulp was treated with 9, 10, or 11 % aqueous NaOH solution for 1 h before compression molding. To study the time dependence of mercerization the pulp was treated with 12 wt% aqueous NaOH for 1, 6 or 48 h. The cellulose I and II contents of the biocomposites were determined by solid state cross polarization/magic angle spinning carbon 13 nuclear magnetic resonance (CP/MAS 13C NMR) spectroscopy. By spectral fitting of the C6 and C1 region the cellulose I and II content, respectively, could be determined. Mercerization decreased the total crystallinity (sum of cellulose I and cellulose II content) and it was not possible to convert all cellulose I to cellulose II in the NaOH range investigated. Neither increased the conversion significantly with 12 wt% NaOH at longer treatment times. The slowdown of the cellulose I conversion was suggested as being the result from the formation of cellulose II as a consequence of coalescence of anti-parallel surfaces of neighboring fibrils (Blackwell et al. in Tappi 61:71–72, 1978; Revol and Goring in J Appl Polym Sci 26:1275–1282, 1981; Okano and Sarko in J Appl Polym Sci 30:325–332, 1985). Compression molding of the partially mercerized dissolving pulps yielded biocomposites with tensile properties that could be correlated to the decrease in cellulose I content in the pulps. Mercerization introduces cellulose II and disordered cellulose and lowered the total crystallinity reflected as higher water sensitivity (higher WRV values) and poorer stiffness of the mercerized biocomposites.  相似文献   

16.
Cellulose was dissolved rapidly in 4.6 wt % LiOH/15 wt % urea aqueous solution and precooled to –10 °C to create a colorless transparent solution. 13C‐NMR spectrum proved that it is a direct solvent for cellulose rather than a derivative aqueous solution system. The result from transmission electron microscope showed a good dispersion of the cellulose molecules in the dilute solution at molecular level. Weight‐average molecular weight (Mw), root mean square radius of gyration (〈s2z1/2), and intrinsic viscosity ([η]) of cellulose in LiOH/urea aqueous solution were examined with laser light scattering and viscometry. The Mark–Houwink equation for cellulose in 4.6 wt % LiOH/15 wt % urea aqueous solution was established to be [η] = 3.72 × 10?2 M in the Mw region from 2.7 × 104 to 4.12 × 105. The persistence length (q), molar mass per unit contour length (ML), and characteristic ratio (C) of cellulose in the dilute solution were given as 6.1 nm, 358 nm?1, and 20.8, respectively. The experimental data of the molecular parameters of cellulose agreed with the Yamakawa–Fujii theory of the worm‐like chain, indicating that the LiOH/urea aqueous solution was a desirable solvent system of cellulose. The results revealed that the cellulose exists as semistiff‐chains in the LiOH/urea aqueous solution. The cellulose solution was stable during measurement and storage stage. This work provided a new colorless, easy‐to‐prepare, and nontoxic solvent system that can be used with facilities to investigate the chain conformation and molecular weight of cellulose. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3093–3101, 2006  相似文献   

17.
Cellulose was dissolved rapidly in a NaOH/thiourea aqueous solution (9.5:4.5 in wt.-%) to prepare a transparent cellulose solution, which was employed, for the first time, to spin a new class of regenerated cellulose fibers by wet spinning. The structure and mechanical properties of the resulting cellulose fibers were characterized, and compared with those of commercially available viscose rayon, cuprammonium rayon and Lyocell fibers. The results from wide angle X-ray diffraction and CP/MAS 13C NMR indicated that the novel cellulose fibers have a structure typical for a family II cellulose and possessed relatively high degrees of crystallinity. Scanning electron microscopy (SEM) and optical microscopy images revealed that the cross-section of the fibers is circular, similar to natural silk. The new fibers have higher molecular weights and better mechanical properties than those of viscose rayon. This low-cost technology is simple, different from the polluting viscose process. The dissolution and regeneration of the cellulose in the NaOH/thiourea aqueous solutions were a physical process and a sol-gel transition rather than a chemical reaction, leading to the smoothness and luster of the fibers. This work provides a potential application in the field of functional fiber manufacturing.  相似文献   

18.
纤维素/甲壳素共混膜的结构表征与抗凝血性能   总被引:20,自引:0,他引:20  
以 6wt %NaOH 4wt%尿素为纤维素的新溶剂 ,采用溶液共混法制备出纤维素 甲壳素共混膜 ,为甲壳素在碱性溶液中制膜提供了新的方法 .红外光谱、X 射线衍射、扫描电镜和力学性能、抗凝血性能测试结果表明 ,共混膜中甲壳素含量低于 4 0wt%时 ,纤维素与甲壳素分子间具有良好的相容性 ;在纤维素中引入适量甲壳素可提高共混膜的抗张强度 ,共混膜的干、湿态抗张强度在甲壳素含量 10wt%时最大 ,其值分别为 89 1MPa和 4 3 7MPa ,比纯态纤维素膜的干、湿态抗张强度分别提高了 6 7%和 11 5 % ;甲壳素的引入可明显降低血小板在共混膜表面的粘附、凝聚与变性 ,增大共混膜的抗凝血参数 ,甲壳素含量达到 5 0wt%时 ,该共混膜具有良好的抗凝血性能  相似文献   

19.
Dissolution of Cellulose in Aqueous NaOH Solutions   总被引:10,自引:0,他引:10  
Dissolution of a number of cellulose samples in aqueous NaOH was investigated with respect to the influence of molecular weight, crystalline form and the degree of crystallinity of the source samples. A procedure for dissolving microcrystalline cellulose was developed and optimized, and then applied to other cellulose samples of different crystalline forms, crystallinity indices and molecular weights. The optimum conditions involved swelling cellulose in 8–9 wt % NaOH and then freezing it into a solid mass by holding it at –20°C. This was followed by thawing the frozen mass at room temperature and diluting with water to 5% NaOH. All samples prepared from microcrystalline cellulose were completely dissolved in the NaOH solution by this procedure. All regenerated celluloses having either cellulose II or an amorphous structure prepared from linter cellulose and kraft pulps were also essentially dissolved in the aqueous NaOH by this process. The original linter cellulose, its mercerized form and cellulose III samples prepared from it had limited solubility values of only 26–37%, when the same procedure was applied. The differences in the solubility of the celluloses investigated have been interpreted in terms of the degrees to which some long-range orders present in solid cellulose samples have been disrupted in the course of pre- treatments.  相似文献   

20.
Hydroxyethylcellulose (HEC) was synthesized by a fully homogenous method from cellulose in 7.5 wt.-% NaOH/11 wt.-% urea aqueous solutions under mild conditions. HEC samples were characterized with NMR, SEC-LLS, solubility, and viscosity measurements. The MS and DS values of the obtained HEC samples are in the range from 0.54 to 1.44 and 0.45 to 1.14, respectively, and the relative DS values at C-2 and C-6 hydroxyl groups are slightly higher than those at C-3 hydroxyl groups. HEC samples are soluble in water starting from a MS of 0.57 and DS of 0.49, which display high viscosity in aqueous solutions. Moreover, a NaOH/urea aqueous solution is a stable system for cellulose etherification. In this way, we could provide a simple, pollution-free, and homogeneous aqueous solution system for synthesizing cellulose ethers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号