首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis and Analytical Characterization of Functionalized β‐Hydroxydithiocinnamic Acids and their Esters. Complex Chemistry towards Nickel(II), Palladium(II), and Platin(II) Starting from silyl‐protected 4‐hydroxy acetophenone ( 1 ) the 1,1‐ethenedihiolato complexes 3 – 5 were synthesised using carbon disulfide and potassium‐tert‐butylate as a base. After being deprotected, the resulting 4‐hydroxy‐substituted complexes 6 – 8 were esterified with DL‐α‐lipoic acid to obtain the compounds 9 – 11 . The resulting complexes were characterized using NMR spectroscopy, mass spectrometry and IR spectroscopy. 3‐substituted β‐hydroxydithiocinnamic acid methyl ester ( 12 ) was obtained via an analogous path of reaction using silyl‐protected 3‐hydroxy acetophenone ( 2 ), carbon disulfide and methyl iodide. After removing of the silyl group the resulting hydroxy group was esterified with DL‐α‐lipoic acid. Using the dithioacid ester 14 as a ligand the NiII ( 15 ), PdII ( 16 ) and PtII ( 17 ) [O,S] complexes were obtained.  相似文献   

2.
Abstract

A new, thiazole derivative ligand, 4-(1-phenyl-1-methylcyclobutane-3-yl)-2-(2-hydroxy-5-bromo benzylidenehydrazino) thiazole (LH), has been synthesized by the reaction of 2-hydroxy-5-bromobenzaldehyde, thiosemicarbazide and subsequently 1-phenyl-1-methyl-3-(2-chloro-1-oxoethyl) cyclobutane. Mononuclear complexes with a metal-ligand ratio of 1 : 2 have been prepared with Cd(II), Co(II), Cu(II), Ni(II) and Zn(II). The authenticity of the ligand and its complexes was established by elemental analyses, IR, 13C and 1H NMR spectra, magnetic susceptibility measurements and thermogravimetric analyses (TGA) and differential scanning calorimetry (DSC).  相似文献   

3.
The interaction of zinc(II), lead(II), and cadmium(II) with Glutathione (S‐L‐glutamyl‐Lcysteinylglycine) as primary ligand and zwitterionic buffers (N‐[2‐Hydroxyethyl]piperazine‐N′‐[2‐ethanesulfonic acid]) (HEPES) and (N‐Hydroxyethyl]piperazine‐N′‐[2‐hydroxy‐propanesulfonic acid]) (HEPPSO) as secondary ligands were studied by potentiometric‐pH titration in 1:1:1 ratio at 25.0 °C and I = 0.1 mol.dm?3 (KNO3). The formation constants of different normal and protonated binary and ternary complex species were calculated. Formation constants for the monohydroxy, and dihydroxy complexes for the binary systems M(II) + HEPES and M(II) + HEPPSO have been evaluated. The distribution curves for the various complex species as a function of pH were constructed.  相似文献   

4.
Mn(II), Co(II), Ni(II), Cu(II), Pd(II) and Ru(III) complexes of Schiff bases derived from the condensation of sulfaguanidine with 2,4‐dihydroxy benzaldehyde ( HL1 ), 2‐hydroxy‐1‐naphthaldehyde ( HL2 ) and salicylaldehyde ( HL3 ) have been synthesized. The structures of the prepared metal complexes were proposed based on elemental analysis, molar conductance, thermal analysis (TGA, DSC and DTG), magnetic susceptibility measurements and spectroscopic techniques (IR, UV‐Vis, and ESR). In all complexes, the ligand bonds to the metal ion through the azomethine nitrogen and α‐hydroxy oxygen atoms. The structures of Pd(II) complex 8 and Ru(III) complex 9 were found to be polynuclear. Two kinds of stereochemical geometries; distorted tetrahedral and distorted square pyramidal, have been realized for the Cu(II) complexes based on the results of UV‐Vis, magnetic susceptibility and ESR spectra whereas octahedral geometry was predicted for Co(II), Mn(II) and Ru(III) complexes. Ni(II) complexes were predicted to be square planar and tetrahedral and Pd(II) complexes were found to be square planar. The antimicrobial activity of the ligands and their metal complexes was also investigated against the gram‐positive bacteria Staphylococcus aures and Bacillus subtilis and gram‐negative bacteria, Escherichia coli and Pesudomonas aeruginosa, by using the agar dilution method. Chloramphenicol was used as standard compound. The obtained data revealed that the metal complexes are more or less, active than the parent ligand and standard. The X‐ray crystal structure of HL3 has been also reported.  相似文献   

5.
《中国化学会会志》2017,64(3):261-281
A new Schiff base was prepared from the reaction of 4,4′‐methylenedianiline with 2‐benzoylpyridine in 1:2 molar ratio, as well as its different metal chelates. The structures of the ligand and its metal complexes were studied by elemental analyses, spectroscopic methods (infrared [IR ], ultraviolet–visible [UV –vis], 1H nuclear magnetic resonance [NMR ], electron spin resonance [ESR ]), magnetic moment measurements, and thermal studies. The ligand acts as tetradentate moiety in all complexes. Octahedral geometry was suggested for Mn(II ), Cu(II ), Cr(III ), and Zn(II ) chloride complexes and pentacoordinated structure and square planar geometry for Co(II ), Ni(II ), Cu(NO3 )2, CuBr2 , and Pd(II ) complexes. ESR spectra of copper(II ) complexes ( 4 )–( 6 ) at room temperature display rhombic symmetry for complex ( 4 ) and axial type symmetry for complexes ( 5 ) and ( 6 ), indicating ground state for Cu(II ) complexes. The derivative thermogravimetric (DTG ) curves of the ligand and its metal complexes were analyzed by using the rate equation to calculate the thermodynamic and kinetic parameters, which indicated strong binding of the ligand with the metal ion in some complexes. Also, some of these compounds were screened to establish their potential as anticancer agents against the human hepatic cell line Hep‐G2 . The obtained IC50 value of the copper(II ) bromide complex (4.34 µg/mL ) is the highest among the compounds studied.  相似文献   

6.
A new fluorene ligand, benzo[15-crown-5]-5H-pyrido[3′,2′:4,5]cylopenta[1,2-b]pyridin-5-ylidenehydrazone (bph), has been synthesized from the reaction of 4,5-diazafluoren-9-one with 4′-formylbenzo-15-crown-5. The Co(II), Cu(II), and Ru(II) complexes of the ligand were prepared and characterized. The metal-to-ligand ratio of the Co(II) and Cu(II) complexes was found to be 2:1 and that of the Ru(II) complex was found to be 1:1. The ligand and complexes have been characterized by FTIR, UV–visible, 1H NMR and fluorescence spectra, as well as elemental analyses and mass spectra.  相似文献   

7.
A new Schiff base, {1-[(2-hydroxy-naphthalen-1-ylmethylene)-amino]-4-phenyl-2-thioxo-1, 2-dihydro-pyrimidin-5-yl}-phenyl-methanone, has been synthesized from N-amino pyrimidine-2-thione and 2-hydroxynaphthaldehyde. Metal complexes of the Schiff base were prepared from acetate/chloride salts of Cu(II), Co(II), Ni(II), Zn(II), and Cd(II) in methanol. The chemical structures of the Schiff-base ligand and its metal complexes were confirmed by elemental analyses, IR, 13C-NMR, 1H-NMR, API-ES, UV-Visible spectroscopy, magnetic susceptibility, and thermogravimetric analyses. The electronic spectral data and magnetic moment measurements suggest mononuclear octahedral and mononuclear or binuclear square planar structures for the metal complexes. In light of these results, it was suggested that this ligand coordinates to each metal atom by hydroxyl oxygen, azomethine nitrogen, and thione sulfur to form octahedral complexes with Cd(II) and Zn(II).  相似文献   

8.
The complexation between N‐methyl‐3‐acetyl‐4‐hydroxyquinolin‐2‐one (NMeQuin) and N‐H‐3‐acetyl‐4‐hydroxy quinolin‐2‐one (NHQuin) with MgCl2, ZnCl2 and BaCl2 has been accomplished. The structure of the resulting complexes 1–5 has been elucidated through elemental analyses, FT‐IR and 1H/13C NMR Spectroscopy and Mass Spectrometry. The spectroscopic data show complexes of the general formula Mg2(OH)L3(H2O)z and ML2(H2O)Z where: M = Zn(II) and Ba(II), L = NMeQuin, NHQuin and z = 2, 4.  相似文献   

9.
Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO2(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV–vis, 1H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25 ± 1 °C and at 0.1 M KNO3 ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO2(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats–Redfern and Horowitz–Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H2O)4]·Cl2 and [Zn(LFX)(H2O)4]·Cl2 were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other complexes had been found to be inactive at lower concentration than 100 μg/ml.  相似文献   

10.
A new ligand, 2‐aminonicotinaldehyde N‐methyl thiosemicarbazone (ANMTSC) and its metal complexes [Co(II) ( 1 ); Ni(II) ( 2 ); Cu(II) ( 3 ); Zn(II) ( 4 ); Cd(II) ( 5 ) or Hg(II) ( 6 )] were synthesized. The compounds were characterized by analytical methods and various spectroscopic (infrared, magnetic, thermal, 1H, 13C NMR, electronic and ESR) tools. The structure of ANMTSC ligand was confirmed by single crystal X‐ray diffraction study. The spectral data of metal complexes indicate that the ligand acts as mononegative, bidentate coordination through imine nitrogen (N) and thiocarbonyl sulphur (S?) atoms. The proposed geometries for complexes were octahedral ( 1 – 2 ), distorted octahedral ( 3 ) and tetrahedral ( 4 – 6 ). Computational details of theoretical calculations (DFT) of complexes have been discussed. The compounds were subjected to antimicrobial, antioxidant, antidiabetic, anticancer, ROS, studies and EGFR targeting molecular docking analysis. Complex 5 has shown excellent antibacterial activity and the complexes 2 and 5 have shown good antifungal activity. The complexes 1 and 4 displayed good antioxidant property with IC50 values of 11.17 ± 1.92 μM and 10.79 ± 1.85 μM, respectively compared to standard. In addition, in vitro anticancer activity of the compounds was investigated against HeLa, MCF‐7, A549, IMR‐32 and HEK 293 cell lines. Among all the compounds, complex 4 was more effective against HeLa (IC50 = 10.28 ± 0.69 μM), MCF‐7 (IC50 = 9.80 ± 0.83 μM), A549 (IC50 = 11.08 ± 0.57 μM) and IMR‐32 (10.41 ± 0.60 μM) exhibited superior anticancer activity [IC50 = 9.80 ± 0.83 ( 4 ) and 9.91 ± 0.37 μM ( 1 )] against MCF‐7 compared with other complexes.  相似文献   

11.
The synthesis and characterization of new transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 3‐(2‐hydroxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL1 ) and 3‐(2‐hydroxy‐3‐carboxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL2 ) have been carried out. Their structures were confirmed by elemental analyses, thermal analyses, spectral and magnetic data. The IR and 1H NMR spectra indicated that HL1 and HL2 coordinated to the metal ions as bidentate monobasic ligands via the hydroxyl O and azo N atoms. The UV‐Vis, ESR spectra and magnetic moment data revealed the formation of octahedral complexes [Mn L1 (AcO)(H2O)3] ( 1 ), [Co L1 (AcO)(H2O)3]·H2O ( 2 ), [Mn L2 (AcO)(H2O)3] ( 6 ) and [Co L2 (AcO)(H2O)3] ( 7 ), [Ni L1 (AcO)(H2O)] ( 3 ), [Zn L1 (AcO)(H2O)]·H2O ( 5 ), [Ni L2 (AcO)(H2O)] ( 8 ), [Zn L2 (AcO)(H2O)]·10H2O ( 10 ) have tetrahedral geometry, whereas [Cu L1 (AcO)(H2O)2] ( 4 ) and [Cu L2 (AcO)(H2O)2]·5H2O ( 9 ) have square pyramidal geometry.. The mass spectra of the complexes under EI‐con‐ ditions showed the highest peaks corresponding to their molecular weights, based on the atomic weights of 55Mn, 59Co, 58Ni, 63Cu and 64Zn isotopes; besides, other peaks containing other isotopes distribution of the metal. Kinetic and thermodynamic parameters of the thermal decomposition stages were computed from the thermal data using Coats‐Redfern method. HL2 and complexes 6 – 10 were found to have moderate antimicrobial activities against Staphylococcus aureus (gram positive), Escherichia coli (gram negative) and Salmonella sp bacteria, and antifungal activity against Fusarium oxysporum, Aspergillus niger and Candida albicans. Also, in most cases, metallation increased the activity compared with the free ligand.  相似文献   

12.
In this study, 4-hydroxysalicylaldehyde-p-aminoacetophenoneoxime (LH) was synthesized starting from p-aminoacetophenoneoxime and 4-hydroxysalicylaldehyde. Complexes of this ligand with Co(II), Ni(II), Cu(II) and Zn(II) were prepared with a metal?: ligand ratio of 1?:?2. The ligand and its metal complexes have been characterized by elemental analyses, IR, 1H- and 13C-NMR spectra, magnetic susceptibility measurements and thermogravimetric analyses (TGA).  相似文献   

13.
A novel diazadiphosphetidine ligand derived from the reaction of 2,4‐dichloro‐1,3‐dimethyl‐1,3,2,4‐diazadiphosphetidine‐2,4‐dioxide and 2,2′‐(ethane‐1,2‐diylbis[oxy])bis(ethan‐1‐amine) and its Ni(II), Cu(II), and Co(II) complexes have been synthesized, characterized by spectroscopic, elemental analyses, magnetic susceptibility, and conductivity methods, and screened for antimicrobial, DNA binding, and cleavage properties. Spectroscopic analysis and elemental analyses indicate the formula [M(H2L)Cl2] for the Cu(II), Co(II), Ni(II), and Zn(II) complexes and octahedral geometry for all the complexes. The non‐electrolytic nature of the complexes in dimethyl sulfoxide (DMSO) was confirmed by their molar conductance values, which are in the range 12.32–6.73 Ω?1 cm2 mol?1. Computational studies have been carried out at the density functional theory (DFT)‐B3LYP/6‐31G(d) level of theory on the structural and spectroscopic properties of diazadiphosphetidine H2L and its binuclear Cu(II), Co(II), Ni(II), and Zn(II) complexes. Six tautomers and geometrical isomers of the diazadiphosphetidine ligand were confirmed using semiempirical AM1 and DFT method from DMOL3 calculations. The copper complex had the best antibacterial activity against Staphylococcus aureus (ATCC 29213). DNA cleavage activities of the compounds, evaluated on pBR322 DNA by agarose gel electrophoresis in the presence and absence of an oxidant (H2O2) and a free‐radical scavenger (DMSO), indicated no activity for the ligand and moderate activity for the complexes, with the copper complex cleaving pBR322 DNA more efficiently in the presence of H2O2.  相似文献   

14.

In this study, 1,2-dihydroxyimino-3,7-di-aza-9,10-O-α-methyl benzal decane (LH2) was synthesized starting from 1,2-O-α-methyl benzal-4-aza-7-amino heptane (RNH2) and antichloroglyoxime. With this ligand, complexes were synthesized using Ni(II) and Cu(II) salts with a metal:ligand ratio of 1:2. However, the reaction of the ligand with salts of Zn(II) and Cd(II) gave products with metal:ligand ratio of 1:1. Structures of the ligand and its complexes are proposed based on elemental analyses, IR, 13C- and 1H-NMR spectra, magnetic susceptibility measurements and thermogravimetric analyses (TGA).  相似文献   

15.
Novel zinc(II), copper(II), and cobalt(II) complexes of the Schiff base derived from 2‐hydroxy‐1‐naphthaldehyde and D, L ‐selenomethionine were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and powder XRD. The analytical data showed the composition of the metal complex to be ML(H2O), where L is the Schiff base ligand and M = Co(II), Cu(II) and Zn(II). IR results confirmed the tridentate binding of the Schiff base ligand involving azomethine nitrogen, naphthol oxygen and carboxylato oxygen atoms. 1H NMR spectral data of lithium salt of the Schiff base ligand [Li(HL)] and ZnL(H2O) agreed with the proposed structures. The conductivity values of complexes between 12.50 and 15.45 S cm2 mol?1 in DMF suggested the presence of non‐electrolyte species. The powder XRD studies indicated that Co(II) complex is amorphous, whereas Cu(II) and Zn(II) complexes are crystalline. The results of antibacterial and antifungal screening studies indicated that Li(HL) and its metal complexes are active, but CuL(H2O) is most active among them. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A series of new mixed ligand complexes of Zn(II), Cd(II), and Hg(II) with cis-3,7-dimethyl-2,6-octadienthiosemicarbazone (CDOTSC; LH) and N-phthaloyl amino acids (AH) have been synthesized by the reaction of metal dichloride with ligands CDOTSC and N-phthaloyl derivative of DL-glycine (A1H), L-alanine (A2H), or L-valine (A3H) in a 1:1:1 molar ratio in dry refluxing ethanol. All the isolated complexes have the general composition [M(L)(A)]. The plausible structure of these newly synthesized complexes has been proposed on the basis of elemental analyses, molar conductances, molecular weight measurement, and various spectral (IR, 1H NMR, and 13C NMR) studies, and four coordinated geometries have been assigned to these complexes. All the complexes and ligands have been screened for their antibacterial activity.  相似文献   

17.
A new heterocyclic compound N-(5-benzoyl-2-oxo-4-phenyl-2H-pyrimidin-1-yl)-oxalamic acid has been synthesized from N-amino pyrimidine-2-one and oxalylchloride. Bis-chelate complexes of the ligand were prepared from acetate/chloride salts of Cu(II), Co(II), Mn(II), Ni(II), Zn(II), Cd(II), and Pd(II) in methanol. The structures of the ligand and its metal complexes were characterized by microanalyses, IR, AAS, NMR, API-ES, UV-Vis spectroscopy, magnetic susceptibility, and thermogravimetric analyses. An octahedral geometry has been suggested for all the complexes, except for Pd(II) complex, in which the metal center is square planar. Each ligand binds using C(2)=O, HN, and carboxylate. The cyclic voltammograms of the ligand and the complexes are also discussed. The new synthesized compounds were evaluated for antimicrobial activities against Gram-positive, Gram-negative bacteria and fungi using the microdilution procedure. The Cu(II) complex displayed selective and effective antibacterial activity against one Gram-positive spore-forming bacterium (Bacillus cereus ATCC 7064), two Gram-positive bacteria (Staphylococcus aureus ATCC 6538 and S. aureus ATCC 25923) at 40–80 µg mL?1, but poor activity against Candida species. The Cu(II) complex might be a new antibacterial agent against Gram-positive bacteria.  相似文献   

18.
A novel hydrazone ligand derived from condensation reaction of 3‐hydroxy‐2‐naphthoic hydrazide with dehydroacetic acid, and its Ni(II), Cu(II) and Co(II) complexes were synthesized, characterized by spectroscopic, elemental analyses, magnetic susceptibility and conductivity methods, and screened for antimicrobial, DNA binding and cleavage properties. Spectroscopic analysis and elemental analyses indicated the formula, [MLCl2], for the complexes; square planar geometry for the nickel, and tetrahedral geometry for copper and cobalt complexes. The non‐electrolytic natures of the complexes in Dimethyl Sulphoxide (DMSO) were confirmed by their molar conductance values in the range of 6.11–14.01 Ω?1cm2mol?1. The copper complex had the best antibacterial activity against Staphylococcus aureus (ATCC 29213). DNA cleavage activities of the compounds, evaluated on pBR322 DNA, by agarose gel electrophoresis, in the presence and absence of oxidant (H2O2) and free radical scavenger (DMSO), indicated no activity for the ligand, and moderate activity for the complexes, with the copper complex cleaving pBR322 DNA more efficiently in the presence of H2O2. When the complexes were evaluated for antibacterial and A‐DNA activity using Molecular docking technique, the copper complex was found to be most effective against Gram‐positive (S. aureus) bacteria. [CuLCl2] showed good hydrogen bonding interaction with the major‐groove (C2.G13 base pair) of A‐DNA. Density functional theory (DFT) calculations of the structural and electronic properties of the complexes revealed that [CuLCl2] had a smaller HOMO‐LUMO gap, suggesting a higher tendency to donate electrons to electron‐accepting species of biological targets.  相似文献   

19.
A series of new mixed ligand complexes of Zn(II), Cd(II), and Hg(II) with citronellal thiosemicarbazone [3,7-dimethyl-6-octene-1-a1 thiosemicarbazone (LH)] and N-phthaloyl amino acids (AH) have been synthesized by the reaction of metal(II) chloride with ligands citronellal thiosemicarbazone (DOTSC) and N-phthaloyl glycine [1,3-dihydro-1,3-dioxo-2H-isoindole-2-acetic acid (A1H)] or N-phthaloyl alanine [1,3-dihydro-1,3-dioxo-α(methyl)-2H-isoindole-2-acetic acid (A2H)] in 1:1:1 molar ratio in dry refluxing ethanol. All the complexes have been characterized by elemental analyses, molar conductance measurement, molecular weight measurement, IR, and multinuclear NMR (1H and 13C{1H}) spectral studies. IR, 1H, and 13C{1H} NMR spectral studies suggest the involvement of azomethine-N, thiol-S atoms of the thiosemicarbazone moiety and both carboxylate-O of N-phthaloyl amino acid moiety in coordination with central metal(II) ion, and four coordinated geometries have been assigned to these complexes. The free ligands and metal complexes have been screened for their antifungal activity against two fungal strains, Fusarium moniliformae and Macrophomina phaseolina, using the the radial growth method. The results of antifungal activity show that metal complexes show enhanced higher activity than the free ligands.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

20.
A bioactive Schiff base HL i.e. 2‐hydroxy‐benzoic acid(3,4‐dihydro‐2H ‐naphthalen‐1‐ylidene)‐hydrazide was synthesized by reacting equimolar amount of salicylic acid hydrazide and 1‐tetralone. Co(II), Ni(II) and Zn(II) complexes of ligand HL was synthesized in 1:1 and 1:2 molar ratio of metal to ligand. The structure of the synthesized ligand and metal complexes was established by elemental analysis, molar conductance, magnetic susceptibility measurements, electronic, IR and EPR spectral techniques. For determining the thermal stability the TGA has been done. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6–31 + g(d,p) basis set. Spectral data reveal that ligand behave uninegative tridentate in ML complexes and uninegative bidentate in ML2 complexes. On the basis of characterization octahedral geometry has been assigned for Co(II) and Ni(II) complexes, while tetrahedral for Zn(II) complexes. Antibacterial activity of the synthesized compounds were evaluated against Staphylococcus aureus , Bacillus subtilis, Escherichia coli , Xanthomonas campestris and Pseudomonas aeruginosa and the results revealed that metal complexes show enhanced activity in comparison to free ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号