首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The detection of highly resolved spectra in electron spin resonance (ESR) measurements of radical polymerization is presented. Well‐resolved ESR spectra of the propagating radical were detected in the radical polymerization of several vinyl monomers with a specially designed cavity and cell. More highly resolved ESR spectra of the propagating radicals of vinyl and diene compounds were observed with aconventional spectrometer without the specially designed cavity and cell. On the basis of the ESR spectra, propagation rate constants and dynamic behavior of propagating radicals are discussed. Moreover, the application of time‐resolved ESR spectroscopy to research on the initiation process in radical polymerization is shown. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 269–285, 2002  相似文献   

2.
Solvent effect on the polymerization of di-n-butyl itaconate (DBI) with dimethyl azobisisobutyrate (MAIB) was investigated at 50 and 61°C. The solvents used were found to affect significantly the polymerization. The polymerization rate (Rp) and the molecular weight of the resulting polymer are lower in more polar solvents. The initiation rate (Ri) by MAIB, however, shows a trend of being rather higher in polar solvents. The stationary state concentration of propagating poly(DBI) radical was determined by ESR in seven solvents. The rate constants of propagation (kp) and termination (kt) were evaluated by using Rp, Ri, and the polymer radical concentration observed. The kp value decreases fairly with increasing polarity of the solvent used, whereas kt is not so influenced by the solvents. The solvent effect on kp is explained in terms of a difference in the environment around the terminal radical center of the growing chain. Copolymerization of DBI with styrene (St) was also examined in three solvents with different physical properties. The poly(DBI) radical shows a lower reactivity toward St in a more polar solvent.  相似文献   

3.
ESR studies on the radical polymerization of vinyl ethers were performed from ?50°C to room temperature using di-tert-butylperoxide as a photoinitiator. Well resolved ESR spectra were assigned to propagating radicals of vinyl ethers. Their hyperfine splitting constants due to α-proton were about 16 G, being smaller than those of ethyl acrylate and vinyl acetate. The smaller constants is ascribed to a deviation of the propagating radicals from sp2 hybrid structure. The reason why high polymers are not obtained from vinyl ethers by radical polymerization is discussed on the basis of information from the ESR studies.  相似文献   

4.
The polymerization of di-n-butyl itaconate (DBI) intiated with AIBN was kinetically investigated in benezene. The polymerization rate (Rp) was expressed by: Rp = k[AIBN]0.5[DBI]1.7. The polymerization showed a considerably low overall activation energy of 15.3 kcal/mol. The initiator efficiency of AIBN in this system decreased with increasing DBI concentration, ranging from 0.34 to 0.55°C, which is ascribable to viscosity effect due to the monomer. From an ESR study, the polymerization system was found to involve two kinds of persistent radicals, namely, primary propagating ( III ) and propagating ( I ) radicals. The relative concentration of III to I increased with decreasing monomer concentration. Azo-nitrile initiators such as AVN and ACN similarly produced two persistent radicals, while MAIB, DBPO, and PBO yielded only propagating radical I as persistent. The MAIB-initiated polymerization of DBI was also performed in benzene. Similar kinetic features were observed, that is, a higher dependence of Rp on the DBI concentration and a low overall activation energy (14.4 kcal/mol). The following rate equation was obtained at 50°C:Rp = k[MAIB]0.5[DBI]1.6. The initiator efficiency of MAIB decreased with increasing DBI concentration, ranging from 0.32 to 0.53 at 50°C. The concentration of propagating radical I was determined by ESR at 50 and 61°C, from which kp and kt were estimated. The kp value increased with increasing monomer concentration, while the kt one decreased with the DBI concentration. These values are much lower compared with those of MMA.  相似文献   

5.
The photochemical polymerization rates of isoprene, ethyl methacrylate, and of styrene in various aromatic solvents were measured. The average lifetimes of propagating radicals were measured by the rotating sector method. The polymerization rate constants, Kp, were determined and compared with dipole moments (μ) and Hammett σ constants for the aromatic solvents. Linear correlations of log(kp/kp, benzene) vs. μ and σ were obtained.  相似文献   

6.
Absolute rate constants of the vinyl benzoate polymerization have been measured by use of the intermittent illumination method in various aromatic solvents and ethyl acetate at 30°C. The determination of absolute rate constants showed that effects of solvent on the polymerization rate of vinyl benzoate were mainly ascribed to the variation of kp values with solvents rather than that of kt values. The kp values for solvents used increased in the order: benzonitrile < ethyl benzoate < anisole < chlorobenzene < benzene < fluorobenzene < ethyl acetate. There was an eightfold difference between the largest and the smallest values The large variation among kp values was explained neither by the copolymerization through solvents nor the chain transfer to solvents, but by a reversible complex formation between the propagating radical and aromatic solvents. This explanation was supported by a correlation between kp values and calculated delocalization stabilizations for the complexes.  相似文献   

7.
Abstract

ESR study on the primary radicals obtained by decomposition of azo-compounds showed that primary radicals with electron donating substituents were transformed to the corresponding cations in the presence of electron acceptors such as ph2I+PF? 6. Accordingly, propagating radicals are transformed to the corresponding cations in the polymerization of p-methoxy-styrene (MOS), n-butyl vinyl ether (BVE), and N-vinylcarbazole (VCZ) with azoinitiators such as AIBN in the presence of electron acceptors such as Ph2I+PF? 6. In the case of BVE, the polymer formation was caused by cationic species produced by the transformation of the initiating radical. The polymerizations of MOS and VCZ were ascribed to the transformation of the growing radical to the corresponding cation during the propagation step which was classified as the radical/cation transformation polymerization. Block copolymers of MOS/cyclohexene oxide (CHO) and VCZ/CHO were effectively prepared by the radical/cation transformation polymerization of the appropriate monomers in the presence of AIBN, electron acceptor and CHO. The formation of block copolymers was characterized by turbidimetry, thin-layer chromatography, and solubility tests.  相似文献   

8.
The radical polymerization of acrylamide in various solvents in the presence of Lewis acids has been investigated. Considerable effects of LiBr, LiCl and CaCl2 on the total reaction rate and the values of kp and k1 for polymerization in DMSO or THF have been shown. For the polymerization of acrylamide in aqueous solution, addition of the salts does not affect the kinetic behaviour of the process. The observed effect of salts arises from complexation between the salt and the monomer and/or the propagating radicals.  相似文献   

9.
The radical polymerization behavior of ethyl ortho-formyl-phenyl fumarate (EFPF) using dimethyl 2,2′-azobisisobutyrate (MAIB) as initiator was studied in benzene kinetically and ESR spectroscopically. The polymerization rate (Rp) at 60°C was given by Rp = k[MAIB]0.76[EFPF]0.56. The number-average molecular weight of poly(EFPF) was in the range of 1600–2900. EFPF was also easily photopolymerized at room temperature without any photosensitizer probably because of the photosensitivity of the formyl group of monomer. Analysis of 1H? and 13C-NMR spectra of the resulting polymer revealed that the radical polymerization of EFPF proceeds in a complicated manner involving vinyl addition and intramolecular hydrogen-abstraction. The polymerization system was found to involve ESR-observable poly(EFPF) radicals under the actual polymerization conditions. ESR-determined rate constant (2.4–4.0 L/mol s) of propagation at 60°C increased with decreasing monomer concentration, which is mainly responsible for the observed low de-pendency of Rp on the EFPF concentration. Copolymerizations of EFPF with some vinyl monomers were also examined. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
The polymerization of benzyl N-(2,6-dimethylphenyl)itaconamate (BDMPI) with benzoyl peroxide (BPO) in N,N-dimethylformamide (DMF) was studied kinetically by ESR. The polymerization rate (Rp) at 70°C was given by Rp = k[BPO]0.78[BDMPI]1.1. The overall activation energy of polymerization was determined to be 83.7 kJ/mol. The number-average molecular weight of poly(BDMPI) was in the range of 1500–2000 by gel permeation chromatography. From the ESR study, the polymerization system was found to involve ESR-observable propagating radicals of BDMPI under practical polymerization conditions. Using the polymer radical concentration by ESR, the rate constants of propagation (kp) and termination (kt) were determined in the temperature range of 50–70°C. The kp value seemed dependent on the chain-length of propagating radical. The analysis of polymers by the MALDI-TOF mass spectrometry suggested that most of the resulting polymers contain the dimethylamino terminal group. The copolymerization of BDMPI (M1) and styrene (M2) at 50°C in DMF gave the following copolymerization parameters; r1 = 0.49, r2 = 0.26, Q1 = 1.2, and e1 = +0.63. The thermal behavior of poly(BDMPI) was examined by dynamic thermogravimetry and differential scanning calorimetry. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1891–1900, 1997  相似文献   

11.
The polymerization of N-methylmethacrylamide (NMMAm) with azobisisobutyronitrile (AIBN) was investigated kinetically in benzene. This polymerization proceeded heterogeously with formation of the very stable poly(NMMAm) radicals. The overall activation energy of this polymerization was calculated to be 23 kcal/mol. The polymerization rate (Rp) was expressed by: Rp = k[AIBN]0.63-0.68[NMMAm]1?2.5. Dependence of Rp on the monomer concentration increased with increasing NMMAm concentration. From an ESR study, cyanopropyl radicals escaping the solvent cage were found to be converted to the living propagating radicals of NMMAm in very high yields (ca. 90%). Formation mechanism of the living polymer radicals was discussed on the basis of kinetic, ESR spectroscopic, and electron microscopic results.  相似文献   

12.
The rate constants of recombination, k X, of propagating radicals with nitroxides in pseudoliving radical polymerization are determined via the competitive-inhibition method with the use of ESR spectroscopy. This method is applicable to determination of k X in the reactions of propagating radicals of styrene, acrylic acid, and methyl methacrylate with two stable radicals, the nitroxide diethylphosphono-2,2-dimethylpropyl nitroxide and the phenoxide galvinoxyl. The values of k X determined at 50°C increase in the following sequence: diethylphosphono-2,2-dimethylpropyl nitroxide-TEMPO-galvinoxyl. The selectivity of the low-activity propagating radicals of styrene in reactions with stable radicals is shown.  相似文献   

13.
Poly[acryloyl-L-valine (ALV)] microspheres containing peroxy ester groups were prepared by radical copolymerization of ALV with a small amount of di-tert-butyl peroxyfumarate. When the microspheres were irradiated in the presence of second vinyl monomers, long-lived propagating radicals of the second monomers were formed in the microspheres by the reaction of microsphere polymer radicals with the monomers. The presence of a minute quantity of ethyl alcohol served to soften the microspheres and made the polymer radicals more mobile in the microspheres. As a result, sharper ESR spectra of the propagating radicals were observed although their lifetimes became shorter. This microsphere method also yielded easily the stable propagating radicals of a-methylstyrene and 1,1-diphenylethylene which have no homopolymerizability in usual radical polymerization. When N-n-propyldimethacroylamide and N,N′-dimethyl-N,N′-dimethacroylhydrazine, which undergo cyclopolymerization, were used as second monomer, uncyclized polymer radicals were only observed. Some discussions were given on the propagation mechanism of the cyclopolymerization.  相似文献   

14.
3‐Ethyl‐3‐methacryloyloxymethyloxetane (EMO) was easily polymerized by dimethyl 2,2′‐azobisisobutyrate (MAIB) as the radical initiator through the opening of the vinyl group. The initial polymerization rate (Rp) at 50 °C in benzene was given by Rp = k[MAIB]0.55 [EMO]1.2. The overall activation energy of the polymerization was estimated to be 87 kJ/mol. The number‐average molecular weight (M?n) of the resulting poly(EMO)s was in the range of 1–3.3 × 105. The polymerization system was found to involve electron spin resonance (ESR) observable propagating poly(EMO) radicals under practical polymerization conditions. ESR‐determined rate constants of propagation (kp) and termination (kt) at 60 °C are 120 and 2.41 × 105 L/mol s, respectively—much lower than those of the usual methacrylate esters such as methyl methacrylate and glycidyl methacrylate. The radical copolymerization of EMO (M1) with styrene (M2) at 60 °C gave the following copolymerization parameters: r1 = 0.53, r2 = 0.43, Q1 = 0.87, and e1 = +0.42. EMO was also observed to be polymerized by BF3OEt2 as the cationic initiator through the opening of the oxetane ring. The M?n of the resulting polymer was in the range of 650–3100. The cationic polymerization of radically formed poly(EMO) provided a crosslinked polymer showing distinguishably different thermal behaviors from those of the radical and cationic poly(EMO)s. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1269–1279, 2001  相似文献   

15.
The kinetics of the free radical copolymerization of HEMA, EGDMA and TEGDA with MMA have been studied using NIR spectroscopy to follow the reduction in the total C=C concentration with time and 1H NMR to distinguish between the monofunctional and difunctional monomers. ESR measurements of the concentrations of propagating radicals during polymerization have been combined with the conversion results to derive values for the rate constants kp (propagation) and kt (termination). HEMA decreases the gel time of MMA, but the initial rate is unchanged, whereas EGDMA and TEGDA decrease the gel-time and increase the initial rate of polymerization.  相似文献   

16.
Methyl trans-β-vinylacrylate (MVA) undergoes radical polymerization with α,α′-azobis(isobutyronitrile) (AIBN) in bulk and solution. The polymer obtained consists of 85% trans-1,4 and 15% trans-3,4 units. Poly(MVA) (PMVA) is readily soluble in common organic solvents, but insoluble in n-hexane and petroleum ether. PMVA exhibits a glass transition at 60°C, and loses no weight up to 300°C in nitrogen. The kinetics of MVA homopolymerization with AIBN was investigated in benzene. The rate of polymerization (Rp) can be expressed by Rp = k[AIBN]0.5[MVA]1.0, and the overall activation energy has been calculated to be 94 kJ/mol. The propagation radical of MVA at 80°C was detected by ESR spectroscopy, which indicated that the unpaired electron of the propagating radical was completely delocalized over the three allyl carbons. Furthermore, the steady-state concentration of the propagating radical of MVA at 60°C was determined by ESR spectroscopy, and the propagation rate constant (kp) was calculated to be 1.25 X 102 L/mol ·s. Monomer reactivity ratios in copolymerization of MVA (M2) with styrene (M1) are r1 = 0.16 and r2 = 4.9, from which Q and e values of MVA are calculated as 4.2 and -0.32, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
The rates of photochemical polymerization of styrene (St), p-chlorostyrene (Cl-St), methyl methacrylate (MMA), and butyl methacrylate (BMA) with polymethylphenylsilane (PMPS) as an initiator were measured. Polymethylphenylsilane is photodegrated to form silyl radicals that may initiate polymerization of vinyl monomers. Rate constants kp and kt have been determined for these systems. A good correlation (log P = α + βμ) of the resonance stabilization (P) of the chain radicals and the dipole moment (μ) of the monomers is observed for these polymerization systems. This equation may be used to estimate the resonance stabilization (P) of a monomer and the polymerization rate constant (kp). © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Soluble microgels with several pendant vinyl groups were synthesized by radical copolymerization of methyl methacrylate (MMA) with p-divinyl benzene (p-DVB). The polymerization conditions used for intramolecular crosslinking of microgels were chosen from gel permeation chromatograph (GPC) measurements of the reaction products. The rate constant of intramolecular crosslinking (kpi) was estimated from the changes in the concentration of pendant vinyl groups of microgel by using photometrical measurements at 30°C assuming a unimolecular termination mechanism of polymer radicals. As a result, kpi showed larger values than kp of styrene and depended strongly on the internal structure of the microgels.  相似文献   

19.
Electron spin resonance (ESR) spectroscopy can contribute to understanding both the kinetics and mechanism of radical polymerizations. A series of oligo/poly(meth)acrylates were prepared by atom transfer radical polymerization (ATRP) and purified to provide well defined radical precursors. Model radicals, with given chain lengths, were generated by reaction of the terminal halogens with an organotin compound and the radicals were observed by ESR spectroscopy. This combination of ESR with ATRPs ability to prepare well defined radical precursors provided significant new information on the properties of radicals in radical polymerizations. ESR spectra of the model radicals generated from tert-butyl methacrylate precursors, with various chain lengths, showed clear chain length dependent changes and a possibility of differentiating between the chain lengths of observed propagating radicals by ESR. The ESR spectrum of each dimeric, trimeric, tetrameric, and pentameric tert-butyl acrylate model radicals, observed at various temperatures, provided clear experimental evidence of a 1,5-hydrogen shift.  相似文献   

20.
Abstract

This paper presents the results of relaxation studies of the seeded emulsion polymerization of styrene initiated by UV-light with a water-soluble photosensitizer. The relaxation kinetic runs were performed at 45, 50, 55, and 60°C using a small diameter rotary dilatometer with an inner magnetic agitator. The entry rate coefficient of thermally induced free radicals into the latex particles, p 0; the exit rate coefficient of free radicals from latex particles, k; and the average number of free radicals per particle in the thermally induced background polymerization, n ss(thermal) were determined. The propagating rate coefficient kp was determined with the data of monomer concentration in a particle, C M, obtained from experiments with chemical initiation. The Arrhenius formula with p 0, k, and kp was also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号