首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
Annealing [FeL2][BF4]2 ⋅ 2 H2O (L=2,6-bis-[5-methyl-1H-pyrazol-3-yl]pyridine) affords an anhydrous material, which undergoes a spin transition at T1/2=205 K with a 65 K thermal hysteresis loop. This occurs through a sequence of phase changes, which were monitored by powder diffraction in an earlier study. [CuL2][BF4]2 ⋅ 2 H2O and [ZnL2][BF4]2 ⋅ 2 H2O are not perfectly isostructural but, unlike the iron compound, they undergo single-crystal-to-single-crystal dehydration upon annealing. All the annealed compounds initially adopt the same tetragonal phase but undergo a phase change near room temperature upon re-cooling. The low-temperature phase of [CuL2][BF4]2 involves ordering of its Jahn–Teller distortion, to a monoclinic lattice with three unique cation sites. The zinc compound adopts a different, triclinic low-temperature phase with significant twisting of its coordination sphere, which unexpectedly becomes more pronounced as the crystal is cooled. Synchrotron powder diffraction data confirm that the structural changes in the anhydrous zinc complex are reproduced in the high-spin iron compound, before the onset of spin-crossover. This will contribute to the wide hysteresis in the spin transition of the iron complex. EPR spectra of copper-doped [Fe0.97Cu0.03L2][BF4]2 imply its low-spin phase contains two distinct cation environments in a 2:1 ratio.  相似文献   

3.
4.
The metal‐coordinating properties of the prion protein (PrP) have been the subject of intense focus and debate since the first reports of its interaction with copper just before the turn of the century. The picture of metal coordination to PrP has been improved and refined over the past decade, but structural details of the various metal coordination modes have not been fully elucidated in some cases. In the present study, we have employed X‐ray absorption near‐edge spectroscopy as well as extended X‐ray absorption fine structure (EXAFS) spectroscopy to structurally characterize the dominant 1:1 coordination modes for CuII, CuI, and ZnII with an N‐terminal fragment of PrP. The PrP fragment corresponds to four tandem repeats representative of the mammalian octarepeat domain, designated as OR4, which is also the most studied PrP fragment for metal interactions, making our findings applicable to a large body of previous work. Density functional theory (DFT) calculations have provided additional structural and thermodynamic data, and candidate structures have been used to inform EXAFS data analysis. The optimized geometries from DFT calculations have been used to identify potential coordination complexes for multi‐histidine coordination of CuII, CuI, and ZnII in an aqueous medium, modelled using 4‐methylimidazole to represent the histidine side chain. Through a combination of in silico coordination chemistry as well as rigorous EXAFS curve‐fitting, using full multiple scattering on candidate structures derived from DFT calculations, we have characterized the predominant coordination modes for the 1:1 complexes of CuII, CuI, and ZnII with the OR4 peptide at pH 7.4 at atomic resolution, which are best represented as square‐planar [CuII(His)4]2+, digonal [CuI(His)2]+, and tetrahedral [ZnII(His)3(OH2)]2+, respectively.  相似文献   

5.
    
Indium(III) chloride forms in water with potassium 1,2‐dithiooxalate (dto) and potassium 1,2‐dithiosquarate (dtsq) stable coordination compounds. Due to the higher bridging ability of the 1,2‐dithiooxalate ligand in all cases only thiooxalate bridged binuclear complexes were found. From 1,2‐dithioquadratate with an identical donor atom set mononuclear trischelates could be isolated. Five crystalline complexes, (BzlMe3N)4[(dto)2In(dto)In(dto)2] ( 1 ), (BzlPh3P)4[(dto)2In(dto)In(dto)2] ( 2 ), (BzlMe3N)3[In(dtsq)3] ( 3 ), (Bu4N)3[In(dtsq)3] ( 4 ) and (Ph4P)[In(dtsq)2(DMF)2] ( 5 ), have been isolated and characterized by X‐ray analyses. Due to the type of the complex and the cations involved these compounds crystallize in different space groups with the following parameters: 1 , monoclinic in P21/c with a = 14.4035(5) Å, b = 10.8141(5) Å, c = 23.3698(9) Å, β = 124.664(2)°, and Z = 2; 2 , triclinic in P with a = 11.3872(7) Å, b = 13.6669(9) Å, c = 17.4296(10) Å, α = 88.883(5)°, β = 96.763(1)°, γ = 74.587(5)°, and Z = 1; 3 , hexagonal in R3 with a = 20.6501(16) Å, b = 20.6501(16) Å, c = 19.0706(13) Å and Z = 6; 4 , monoclinic in P21/c with a = 22.7650(15) Å, b = 20.4656(10) Å, c = 14.4770(9) Å, β = 101.095(5)°, and Z = 4; 5 , triclinic in P with a = 9.2227(6) Å, b = 15.3876(9) Å, c = 15.5298(9) Å, α = 110.526(1)°, β = 100.138(1)°, γ = 101.003(1)°, and Z = 2.  相似文献   

6.
By using complementary experimental techniques and first‐principles theoretical calculations, magnetic anisotropy in a series of five hexacoordinated nickel(II) complexes possessing a symmetry close to C2v, has been investigated. Four complexes have the general formula [Ni(bpy)X2]n+ (bpy=2,2′‐bipyridine; X2=bpy ( 1 ), (NCS?)2 ( 2 ), C2O42? ( 3 ), NO3? ( 4 )). In the fifth complex, [Ni(HIM2‐py)2(NO3)]+ ( 5 ; HIM2‐py=2‐(2‐pyridyl)‐4,4,5,5‐tetramethyl‐4,5‐dihydro‐1H‐imidazolyl‐1‐hydroxy), which was reported previously, the two bpy bidentate ligands were replaced by HIM2‐py. Analysis of the high‐field, high‐frequency electronic paramagnetic resonance (HF‐HFEPR) spectra and magnetization data leads to the determination of the spin Hamiltonian parameters. The D parameter, corresponding to the axial magnetic anisotropy, was negative (Ising type) for the five compounds and ranged from ?1 to ?10 cm?1. First‐principles SO‐CASPT2 calculations have been performed to estimate these parameters and rationalize the experimental values. From calculations, the easy axis of magnetization is in two different directions for complexes 2 and 3 , on one hand, and 4 and 5 , on the other hand. A new method is proposed to calculate the g tensor for systems with S=1. The spin Hamiltonian parameters (D (axial), E (rhombic), and gi) are rationalized in terms of ordering of the 3 d orbitals. According to this orbital model, it can be shown that 1) the large magnetic anisotropy of 4 and 5 arises from splitting of the eg‐like orbitals and is due to the difference in the σ‐donor strength of NO3? and bpy or HIM2‐py, whereas the difference in anisotropy between the two compounds is due to splitting of the t2g‐like orbitals; and 2) the anisotropy of complexes 1 – 3 arises from the small splitting of the t2g‐like orbitals. The direction of the anisotropy axis can be rationalized by the proposed orbital model.  相似文献   

7.
8.
9.
10.
    
The amino-terminal copper and nickel/N-terminal site (ATCUN/NTS) present in proteins and bioactive peptides exhibits high affinity towards CuII ions and have been implicated in human copper physiology. Little is known, however, about the rate and exact mechanism of formation of such complexes. We used the stopped-flow and microsecond freeze-hyperquenching (MHQ) techniques supported by steady-state spectroscopic and electrochemical data to demonstrate the formation of partially coordinated intermediate CuII complexes formed by glycyl–glycyl–histidine (GGH) peptide, the simplest ATCUN/NTS model. One of these novel intermediates, characterized by two-nitrogen coordination, t1/2≈100 ms at pH 6.0 and the ability to maintain the CuII/CuI redox pair is the best candidate for the long-sought reactive species in extracellular copper transport.  相似文献   

11.
    
The amino‐terminal copper and nickel/N‐terminal site (ATCUN/NTS) present in proteins and bioactive peptides exhibits high affinity towards CuII ions and have been implicated in human copper physiology. Little is known, however, about the rate and exact mechanism of formation of such complexes. We used the stopped‐flow and microsecond freeze‐hyperquenching (MHQ) techniques supported by steady‐state spectroscopic and electrochemical data to demonstrate the formation of partially coordinated intermediate CuII complexes formed by glycyl–glycyl–histidine (GGH) peptide, the simplest ATCUN/NTS model. One of these novel intermediates, characterized by two‐nitrogen coordination, t1/2≈100 ms at pH 6.0 and the ability to maintain the CuII/CuI redox pair is the best candidate for the long‐sought reactive species in extracellular copper transport.  相似文献   

12.
13.
14.
以cis-1,2-二氰基乙烯-1,2-二硫醇钠Na2(mnt)和2,2'-联吡啶金属配合物M(buy)Cl2为原料,合成了标题配合物M(mnt)(bpy),M=Ni(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ),并经元素分析、热谱、摩尔电导、红外和电子光谱所表征.三者均为四配位的电中性配合物,热分解温度高于310℃,可溶于DMF、DMSO、吡啶、氯仿和丙酮,难溶于水和乙醚.  相似文献   

15.
    
Bis(1,2‐diselenosquarato) Metalates A series of 1,2‐diselenosquarato metalates [M(dssq)2]2– (M = Pd2+, Pt2+, Cu2+, Ni2+, Zn2+, Cd2+, Pb2+, VO2+) was available by direct synthesis from the appropriate metal salt with dipotassium 1,2‐diselenosquarate in deoxygenized water under an argon athmosphere. The copper(II)complex, [Cu(dssq)2]2–, and the oxovanadium(IV)complex, [VO(dssq)2]2–, were identified in solution by EPR spectroscopy (parameters: [Cu(dssq)2]2–: g0 = 2.073; a = –76.0 · 10–4 cm–1, a = 47.0 · 10–4 cm–1; [VO(dssq)2]2–: g0 = 1.986; a = 74.9 · 10–4 cm–1). The complexes bis(tetraphenylphosphonium)[bis(1,2‐diselenosquarato)nickelate(II)], (Ph4P)2[Ni(dssq)2], and bis(tetraphenylphosphonium)[bis(1,2‐diselenosquarato)zincate(II)], (Ph4P)2[Zn(dssq)2], were characterized by X‐ray structure analysis. The square‐planar NiII complex (Ph4P)2[Ni(dssq)2] crystallizes in the monoclinic spacegroup P21/n with the unit cell parameters a = 11.1472(8) Å, b = 15.331(1) Å, c = 14.783(1) Å, β = 94.441(1)° and Z = 2. The ZnII‐complex (Ph4P)2[Zn(dssq)2] is tetrahedral coordinated and crystallizes in the monoclinic spacegroup P21/c with the unit cell parameters a = 9.4238(1) Å, b = 18.5823(3) Å, c = 29.5309(5) Å, β = 96.763(1)° and Z = 4.  相似文献   

16.
17.
The synthesis, structure, EPR, and magnetic studies of two dodecanuclear heterometallic cyclic clusters are reported. The compounds have the general formula [R(2)NH(2)](2)[Cr(10)Cu(2)F(14)(O(2)CCMe(3))(22)] (R=Me, 1 or iPr, 2). Both structures contain an array of metal centers which describe an approximate "hourglass", with an ammonium cation in the center of each half of the figure. The chromium sites are all six-coordinate, with the two copper sites five-coordinate. The majority of metal-metal edges are bridged by a single fluoride and two pivalate ligands, while two Cr--Cu edges are bridged by a single fluoride and a single pivalate. Magnetic studies show that 1 and 2 exhibit similar (but not identical) behavior, which can be attributed to ten antiferromagnetic and two ferromagnetic exchange interactions around the ring which gives an S=0 ground state. Quantum Monte Carlo calculations have been used to quantify the exchange interactions by successfully simulating the susceptibility for the full temperature range and thus clarifying the distinction between 1 and 2. EPR spectroscopy shows signals due to excited states, and a variable-temperature study has provided an estimate of the energy gap between the first excited state (S=1) and second excited state (S=2) for 1 that is consistent with the value obtained using the QMC method.  相似文献   

18.
19.
A novel [NiS4Fe2(CO)6]cluster (1: 'S(4)'=(CH(3)C(6)H(3)S(2))(2)(CH(2))(3)) has been synthesised, structurally characterised and has been shown to undergo a chemically reversible reduction process at -1.31 V versus Fc(+)/Fc to generate the EPR-active monoanion 1(-). Multifrequency Q-, X- and S-band EPR spectra of (61)Ni-enriched 1(-) show a well-resolved quartet hyperfine splitting in the low-field region due to the interaction with a single (61)Ni (I=3/2) nucleus. Simulations of the EPR spectra require the introduction of a single angle of non-coincidence between g(1) and A(1), and g(3) and A(3) to reproduce all of the features in the S- and X-band spectra. This behaviour provides a rare example of the detection and measurement of non-coincidence effects from frozen-solution EPR spectra without the need for single-crystal measurements, and in which the S-band experiment is sensitive to the non-coincidence. An analysis of the EPR spectra of 1(-) reveals a 24 % Ni contribution to the SOMO in 1(-), supporting a delocalisation of the spin-density across the NiFe(2) cluster. This observation is supported by IR spectroscopic results which show that the CO stretching frequencies, nu(CO), shift to lower frequency by about 70 cm(-1) when 1 is reduced to 1(-). Density functional calculations provide a framework for the interpretation of the spectroscopic properties of 1(-) and suggest that the SOMO is delocalised over the whole cluster, but with little S-centre participation. This electronic structure contrasts with that of the Ni-A, -B, -C and -L forms of [NiFe] hydrogenase in which there is considerable S participation in the SOMO.  相似文献   

20.
Density functional calculations were preformed to investigate whether adding Ni into a Cu surface (denoted as Cu/Ni) or adding Cu into a Ni surface (Ni/Cu) is more efficient for catalyzing the water‐gas shift (WGS)? The reactions of water dissociation and monoxide dissociation were selected to assess the activity and selectivity towards WGS, respectively. Our results show that Ni‐atom modification of surfaces is thermodynamically favorable for both reactions. Kinetically, compared with pure Cu, water dissociation is greatly facilitated on Ni‐modified surfaces, and the activity is insensitive to the Ni concentration; however, monoxide dissociation is not well‐promoted on one Ni‐atom‐modified surfaces, but two Ni‐atom modification can notably decrease the dissociation barriers. Overall, on the basis of these results, we conclude that 1) the catalytic performance of bimetallic metals is superior to monometallic ones; 2) at the same Ni concentration on the surface, Cu/Ni and Ni/Cu alloys have almost the same performance towards WGS; and 3) to acquire high WGS performance, the surface Ni atoms should either be low in concentration or highly dispersed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号