首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

2.
Coordination Polymeric 1, 2‐Dithiooxalato and 1, 2‐Dithiosquarato Complexes. Syntheses and Structures of [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2], [Ni(cyclam)(1, 2‐dtsq)]·2DMF, [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H22, and [H3O][H5O2][Cu(cyclam)]3[Cu2(1, 2‐dtsq)3]2 1, 2‐Dithioxalate and 1, 2‐dithiosquarate ions have a pair of soft and hard donor centers and thus are suited for the formation of coordination polymeric complexes containing soft and hard metal ions. The structures of four compounds with building blocks containing these ligands are reported: In [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2] Barium ions and pairs of Cr(bipy)(1, 2‐dtox)2 complexes form linear chains by the bisbidentate coordination of the dithiooxalate ligands towards Ba2+ and Cr3+. In [Ni(cyclam)(1, 2‐dtsq)]·2DMF short NÖH···O hydrogen bonds link the NiS2N4‐octahedra with C2v‐symmetry to an infinite chain. In [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H2O the 1, 2‐dithiosquarato ligand shows a rare example of S‐coordination towards manganese(II). The sulfur atoms of cis‐MnO2S4‐polyedra are weakly coordinated towards the axial sites of square‐planar NiN4‐centers, thus forming a zig‐zag‐chain of Mn···Ni···Mn···Ni polyhedra. [H3O][H5O2][Cu (cyclam)]3[Cu2(1, 2‐dtsq)3]2 contains square planar [CuII(cyclam)]2+ ions and dinuclear [CuI2(1, 2‐dtsq)3]4— ions. Here each copper atom is trigonally planar coordinated by S‐donor atoms of the ligands. The Cu…Cu distance is 2.861(4)Å.  相似文献   

3.
Reaction of MnSO4 · H2O, 2,2′‐bipyridine (bpy), suberic acid and Na2CO3 in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(bpy)2(C8H12O4)2] · 2 H2O ( 1 ) and [Mn(H2O)2‐ (bpy)(C8H12O4)2/2] · H2O ( 2 ). In both complexes, the Mn atoms are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two trans positioned H2O molecules and two suberato ligands (d(Mn–O) = 2.107–2.328 Å; d(Mn–N) = 2.250–2.330 Å). The bis‐monodentate suberato ligands bridge Mn atoms to form dinuclear [Mn2(H2O)4(bpy)2(C8H12O4)2] complex molecules in 1 and 1D [Mn(H2O)2(bpy)(C8H12O4)2/2] chains in 2 . Via the intermolecular hydrogen bondings and π‐π stacking interactions, the dinuclear molecules in 1 are assembled into 2D networks parallel to (100), between which the crystal H2O molecules are sandwiched. The polymeric chains in 2 are linked together by interchain hydrogen bonding and π‐π stacking interactions into 3D networks with the crystal H2O molecules located in tunnels along [010]. Crystal data for 1 : P21/c (no. 14), a = 10.092(1) Å, b = 11.916(2) Å, c = 17.296(2) Å, β = 93.41(1)° and Z = 2. Crystal data for 2 : P21/c (no. 14), a = 11.176(2) Å, b = 9.688(1) Å, c = 37.842(6) Å, β = 90.06(1)° and Z = 8.  相似文献   

4.
The blue copper complex compounds [Cu(phen)2(C6H8O4)] · 4.5 H2O ( 1 ) and [(Cu2(phen)2Cl2)(C6H8O4)] · 4 H2O ( 2 ) were synthesized from CuCl2, 1,10‐phenanthroline (phen) and adipic acid in CH3OH/H2O solutions. [Cu(phen)2‐ (C6H8O4)] complexes and hydrogen bonded H2O molecules form the crystal structure of ( 1 ) (P1 (no. 2), a = 10.086(2) Å, b = 11.470(2) Å, c = 16.523(3) Å, α = 99.80(1)°, β = 115.13(1)°, γ = 115.13(1)°, V = 1617.5(5) Å3, Z = 2). The Cu atoms are square‐pyramidally coordinated by four N atoms of the phen ligands and one O atom of the adipate anion (d(Cu–O) = 1.989 Å, d(Cu–N) = 2.032–2.040 Å, axial d(Cu–N) = 2.235 Å). π‐π stacking interactions between phen ligands are responsible for the formation of supramolecular assemblies of [Cu(phen)2(C6H8O4)] complex molecules into 1 D chains along [111]. The crystal structure of ( 2 ) shows polymeric [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains (P1 (no. 2), a = 7.013(1) Å, b = 10.376(1) Å, c = 11.372(3) Å, α = 73.64(1)°, β = 78.15(2)°, γ = 81.44(1)°, V = 773.5(2) Å3, Z = 1). The Cu atoms are fivefold coordinated by two Cl atoms, two N atoms of phen ligands and one O atom of the adipate anion, forming [CuCl2N2O] square pyramids with an axial Cl atom (d(Cu–O) = 1.958 Å, d(Cu–N) = 2.017–2.033 Å, d(Cu–Cl) = 2.281 Å; axial d(Cu–Cl) = 2.724 Å). Two square pyramids are condensed via the common Cl–Cl edge to centrosymmetric [Cu2Cl2N4O2] dimers, which are connected via the adipate anions to form the [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains. The supramolecular 3 D network results from π‐π stacking interactions between the chains. H2O molecules are located in tunnels.  相似文献   

5.
Single and Double Deprotonated Maleic Acid in Praseodymium Hydrogenmaleate Octahydrate, Pr(C4O4H3)3 · 8 H2O, and Praseodymiummaleatechloride Tetrahydrate, Pr(C4O4H2)Cl · 4 H2O Single crystals of Pr(C4O4H3)3 · 8 H2O grew by slow evaporation of a solution which had been obtained by dissolving Pr(OH)3 in aqueous maleic acid. The triclinic compound (P1, Z = 2, a = 728.63(3), b = 1040.23(3), c = 1676.05(8) pm, α = 72.108(2)°, β = 87.774(2)°, γ = 70.851(2)°, Rall = 0.0261) contains Pr3+ ions in ninefold coordination of oxygen atoms which belong to two monodentate maleate ions and seven H2O molecules. There is one further non‐coordinating maleate ion and one crystal water molecule in the unit cell. Thermal treatment of Pr(C4O4H3)3 · 8 H2O leads first to the anhydrous compound which then decomposes to the respective oxide in two steps upon further heating. Evaporation of a solution of Pr(C4O4H3)3 · 8 H2O which contained additional Cl ions yielded single crystals of Pr(C4O4H2)Cl · 4 H2O. In the crystal structure (monoclinic, P21/c, Z = 4, a = 866.0(1), b = 1344.3(1), c = 896.9(1) pm, β = 94.48(2)°, Rall = 0.0227), the Pr3+ ions are surrounded by nine oxygen atoms. The latter belong to four H2O molecules and three maleate ions. Two of the latter act as bidentate ligands.  相似文献   

6.
Synthesis and Crystal Structures of the Complexes trans ‐[CoIII(py)4F2][H2F3] and [Pd(py)4]F2 · 1.5 HF · 2 H2O The cobalt complex trans‐[Co(III)(py)4F2][H2F3] ( 1 ) has been prepared by electrochemical oxidation of CoF2 in a pyridine/HF mixture and the palladium complex [Pd(py)4]F2 · 1.5 HF · 2 H2O ( 2 ) has been obtained via halogen exchange between Pd(py)2Cl2 and AgF2 in pyridine. 1 and 2 crystallize in the space group C2/c with a = 27.928(14), b = 9.019(3), c = 18.335(8) Å, β = 113.41(3)° for 1 and a = 28.183(9), b = 9.399(3), c = 17.397(6) Å, β = 104.66(3)° for 2 , respectively. Concerning the shape and location of the M(py)4 fragments 1 and 2 are isostructural. The metal atoms occupy special positions in their unit cells with the result that four complex atoms have C2 symmetry and four complex cations have Ci symmetry giving a total of Z = 8. In 1 two F ions complete an octahedral coordination around the Co atoms (Co–F 1.820(2) to 1.834(3) Å). In 2 the shortest Pd–F distance is 3.031(2) Å. This precludes the existence of Pd–F bonds. In 1 one can identify H2F3 groups. In 2 there are larger aggregates, consisting of F, HF, and H2O subunits, connected by H‐bridges. In spite of these differences, both complexes belong to the same type of structure, which may be of a common type Mx+(py)4Fx · y HF · z H2O.  相似文献   

7.
Three new alkali metal transition metal sulfate‐oxalates, RbFe(SO4)(C2O4)0.5 · H2O and CsM(SO4)(C2O4)0.5 · H2O (M = Mn, Fe) were prepared through hydrothermal reactions and characterized by single‐crystal X‐ray diffraction, solid state UV/Vis/NIR diffuse reflectance spectroscopy, infrared spectra, thermogravimetric analysis, and powder X‐ray diffraction. The title compounds all crystallize in the monoclinic space group P21/c (no. 14) with lattice parameters: a = 7.9193(5), b = 9.4907(6), c = 8.8090(6) Å, β = 95.180(2)°, Z = 4 for RbFe(SO4)(C2O4)0.5 · H2O; a = 8.0654(11), b = 9.6103(13), c = 9.2189(13) Å, β = 94.564(4)°, Z = 4 for CsMn(SO4)(C2O4)0.5 · H2O; and a = 7.9377(3), b = 9.5757(4), c = 9.1474(4) Å, β = 96.1040(10)°, Z = 4 for CsFe(SO4)(C2O4)0.5 · H2O. All compounds exhibit three‐dimensional frameworks composed of [MO6] octahedra, [SO4]2– tetrahedra, and [C2O4]2– anions. The alkali cations are located in one‐dimensional tunnels.  相似文献   

8.
The title compound [Cu2(phen)2(C9H14O4)2] · 6 H2O was prepared by the reaction of CuCl2 · 2 H2O, 1,10‐phenanthroline (phen), azelaic acid and Na2CO3 in a CH3OH/H2O solution. The crystal structure (monoclinic, C2/c (no. 15), a = 22.346(3), b = 11.862(1), c = 17.989(3) Å, β = 91.71(1)°, Z = 4, R = 0.0473, wR2 = 0.1344 for 4279 observed reflections) consists of centrosymmetric dinuclear [Cu2(phen)2(C9H14O4)2] complexes and hydrogen bonded H2O molecules. The Cu atom is square‐planar coordinated by the two N atoms of the chelating phen ligand and two O atoms of different bidentate bridging azelaate groups with d(Cu–N) = 2.053, 2.122(2) Å and d(Cu–O) = 1.948(2), 2.031(2) Å. Two azelaate anions bridge two common Cu atoms via the terminal O atoms (d(C–O) = 1.29(2) Å; d(C–C) = 1.550(4)–1.583(4) Å). Phen ligands of adjacent complexes cover each other at distances of about 3.62 Å, indicating π‐π stacking interaction, by which the complexes are linked to 1 D bands.  相似文献   

9.
The Crystal Structure of the Hydrated Cyano Complexes NMe4MnII[(Mn, Cr)III(CN)6] · 3 H2O and NMe4Cd[MIII(CN)6] · 3 H2O (MIII = Fe, Co): Compounds Related to Prussian Blue The crystal structures of the isotypic tetragonal compounds (space group I4, Z = 10) NMe4MnII · [(Mn, Cr)III(CN)6] · 3 H2O (a = 1653.2(4), c = 1728.8(6) pm), NMe4Cd[Fe(CN)6] · 3 H2O (a = 1642.7(1), c = 1733.1(1) pm) and NMe4Cd[Co(CN)6] · 3 H2O (a = 1632.1(2), c = 1722.4(3) pm) were determined by X‐rays. They exhibit ⊥ c cyanobridged layers of octahedra [MIII(CN)6] and [MIIN4(OH2)2], which punctually are interconnected also || c to yield altogether a spaceous framework. The MII atoms at the positions linking into the third dimension are only five‐coordinated and form square pyramids [MIIN5] with angles N–MII–N near 104° and distances of Mn–N: 1 × 214, 4 × 219 pm; Cd–N: 1 × 220 resp. 222, 4 × 226 resp. 228 pm. Further details and structural relations within the family of Prussian Blue are reported and discussed.  相似文献   

10.
Reactions of a freshly prepared Zn(OH)2‐2x(CO3)x · yH2O precipitate, phenanthroline with azelaic and sebacic acid in CH3OH/H2O afforded [Zn(phen)(C9H15O4)2] ( 1 ) and [Zn2(phen)2(H2O)2(C10H16O4)2] · 3H2O ( 2 ), respectively. They were structurally characterized by X‐ray diffraction methods. Compound 1 consists of complex molecules [Zn(phen)(C9H15O4)2] in which the Zn atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different monodentate hydrogen azelaato groups. Intermolecular C(alkyl)‐H···π interactions and the intermolecular C(aryl)‐H···O and O‐H···O hydrogen bonds are responsible for the supramolecular assembly of the [Zn(phen)(C9H15O4)2] complexes. Compound 2 is built up from crystal H2O molecules and the centrosymmetric binuclear [Zn2(phen)2(H2O)2(C10H16O4)2] complex, in which two [Zn(phen)(H2O)]2+ moieties are bridged by two sebacato ligands. Through the intermolecular C(alkyl)‐H···O hydrogen bonds and π‐π stacking interactions, the binuclear complex molecules are assembled into layers, between which the lattice H2O molecules are sandwiched. Crystal data: ( 1 ) C2/c (no. 15), a = 13.887(2), b = 9.790(2), c = 22.887(3)Å, β = 107.05(1)°, U = 2974.8(8)Å3, Z = 4; ( 2 ) P1¯ (no. 2), a = 8.414(1), b = 10.679(1), c = 14.076(2)Å, α = 106.52(1)°, β = 91.56(1)°, γ = 99.09(1)°, U = 1193.9(2)Å3, Z = 1.  相似文献   

11.
The pale‐rose compound [(μ‐C6H8O4)4/2Co(μ‐H2O)2Co(H2O)4] · 4 H2O was prepared from adipic acid and CoCO3 in aqueous solution. The crystal structure (monoclinic, P21/n (no. 14), a = 8.061(1), b = 15.160(2), c = 9.708(2) Å, β = 90.939(7)°, Z = 2, R = 0.0405, wR2 = 0.0971) consists of adipate bridged supramolecular [(μ‐C6H8O4)4/2Co(μ‐H2O)2Co(H2O)4] layers and hydrogen bonded H2O molecules. The cobalt atoms Co1 and Co2 are distorted octahedrally coordinated by the O atoms of two bridging trans‐H2O molecules and four bidentate adipate anions (Co1) and by the O atoms of two bridging trans‐H2O molecules and four monodentate H2O molecules (Co2), respectively. Equatorial bonds: d(Co1–O) = 2.048 Å (2 × ), 2.060 Å (2 × ); d(Co2–O) = 2.057 Å (2 × ), 2.072 Å (2 × ). Axial bonds: d(Co1–O) = 2.235 Å (2 × ); d(Co2–O) = 2.156 Å (2 × ).  相似文献   

12.
Synthesis of Bridged Binuclear Titanocene Compounds – Crystal Structure of Cl2Ti[(C5H4)(C5H4)(Me)Si–Si(Me)(C5H4)(C5H4)]TiCl2 · PhMe Starting from Cp2(Me)Si–Si(Me)Cp2 1 the complexes X2Ti[(C5H4)(C5H4)(Me)Si–Si(Me)(C5H4)(C5H4)]TiX2 (X = Cl ( 2 a ); X = Me ( 3 )) were synthesized. The compounds were characterized by means of their 1H‐ and 13C‐n.m.r. and MS‐spectra. The crystal structure of 2 a · PhMe was determined.  相似文献   

13.
Dicarboxylate Groups as Ligands and Anions in Aquamagnesium Complexes: Crystal Structures of [Mg (C4H2O4)(H2O)4] · H2O and [Mg(H2O)6](C4HO4)2 · 2H2O ((C4H2O4)2— = Fumarate; (C4HO4) = Hydrogenacetylenedicarboxylate) Crystals of tetraaqua(fumarato)magnesium‐hydrate ( 1 ) and hexaaquamagnesium‐bis(hydrogenacetylenedicarboxylate)‐dihydrate ( 2 ) were prepared by reacting MgCl2 with sodium fumarate and acetylenedicarboxylic acid, respectively. In 1 cis‐Mg(H2O)4 units are bridged by α, Ö‐bonded fumarate groups. The resulting zig zag chains exhibit the maximum symmetry compatible with space group symmetry C2/c. 2 consists of layers of voluminous [Mg(H2O)6]2+ cations alternating with layers of C4HO4 anions. The nearly planar anions are held together by parallel stacking and by short hydrogen bonds. Both structures contain efficient H bridging systems. 1 : Space group C2/c, Z = 4, lattice constants at 20 °C: a = 5.298(1), b = 13.178(2), c = 13.374(2)Å; ß = 94.79(2)°, R1 = 0.024. 2 : Space group P1, Z = 1, lattice constants at 20 °C: a = 5.985(1), b = 6.515(1), c = 11.129(1)Å; α = 105.24(2), ß = 91.87(3), γ = 90.92(1)°, R1 = 0.034.  相似文献   

14.
Synthesis, Structure, and Properties of Some Selenidostannates. II. [(C2H5)3NH]2Sn3Se7 · 0,25 H2O and [(C3H7)2NH2]4Sn4Se10 · 4 H2O The new selenidostannate hydrates [(C2H5)3NH]2Sn3Se7 · 0.25 H2O ( I ) and [(C3H7)2NH2]4Sn4Se10 · 4 H2O ( II ) were synthesized from an aqueous suspension of triethylammonium (tripropylammonium), tin, selenium I and in addition sulfur II at 130 °C. I crystallizes at ambient temperature in the monoclinic space group P21/n (a = 2069,3(4) pm, b = 1396,6(3) pm, c = 2342,8(5) pm, β = 114,68(3)°, Z = 8) and is characterized by two different anions, chains from edge‐sharing [Se3Se7]2– units and nets from trigonal SnSe5 bipyramids. II crystallizes at ambient temperature in the tetragonal space group I41/amd (a = 2150,0(3) pm, c = 1174,4(2) pm, Z = 4) and contains adamantane like [Sn4Se10]4–‐cages. The UV‐VIS spectra of the selenidostannates demonstrate that the absorption edges red shift as the dimensionality of the compounds is increased.  相似文献   

15.
Co(C2(COO)2)(H2O)4 · 2 H2O and Co(C2(COO)2)(H2O)2: Two Co‐ordination Polymers of the Acetylenedicarboxylate Dianion By reaction of CoCO3 with an aqueous solution of acetylenedicarboxylic acid and subsequent crystallisation single‐crystals of Co(C2(COO)2)(H2O)4 · 2 H2O were obtained (P21/a, Z = 2). In the solid state structure cobalt is octahedrally surrounded by four water molecules and two oxygen atoms of the carboxylate anions. These octahedra are connected to chains by the dicarboxylates. Already at ambient conditions Co(C2(COO)2)(H2O)4 · 2 H2O looses four water molecules to give Co(C2(COO)2)(H2O)2 (isotypic to Mn[C2(COO)2] · 2 H2O, C2/c, Z = 4). The cobalt cation is now octahedrally co‐ordinated by two water molecules and four oxygen atoms of the dicarboxylate ligands, which connect the Co octahedra to a three dimensional network. Thermoanalytical investigations show another mass loss at about 200 °C, which leads to non‐crystalline products. Measurements of the magnetic susceptibilities result in the expected behaviour for Co2+ in an octahedral co‐ordination (high spin, 4T1 ground state). The effective magnetic moment at room temperature is neff = 5.51 μB.  相似文献   

16.
Yellow crystals of [Mn(H2O)2(bpy)(C4H4O4)] · H2O were obtained by the reaction of 2,2′‐bipyridine, succinic acid, MnSO4 · H2O and Na2CO3 in an aqueous methanol solution. The crystal structure (monoclinic, P21/c (no. 14), a = 8.294(1), b = 11.556(1), c = 17.064(1)Å, β = 95.181(6)°, Z = 4, R = 0.0349, wR2 = 0.0887) consists of 1D supramolecular helix chains [Mn(H2O)2(bpy)(C4H4O4)2/2] and hydrogen bonded H2O molecules. The Mn atoms are octahedrally coordinated by two N atoms of one bidentate chelating bpy ligand and four O atoms of two H2O molecules and two bis‐monodentate bridging succinato ligands with d(Mn–O) = 2.139–2.237Å and d(Mn–N) = 2.268, 2.281 Å. The helix chains are held together by π‐π stacking interactions and hydrogen bonds.  相似文献   

17.
The reaction of CuCl2 · 2 H2O, 1,10‐phenanthroline (phen), suberic acid and Na2CO3 in a CH3CN–H2O solution yielded blue needle‐like crystals of [Cu2(phen)2(C8H12O4)2] · 3 H2O. The crystal structure (monoclinic, P21/n, a = 10.756(2) Å, b = 9.790(2) Å, c = 18.593(4) Å, β = 91.15(3)°, Z = 2, R = 0.043, wR2 = 0.1238) consists of suberato‐bridged [Cu2(phen)2(C8H12O4)4/2] layers and hydrogen bonded H2O molecules. The Cu atoms are coordinated by two N atoms from one bidentate chelating phen ligand and three carboxyl O atoms from different suberato ligands to form distorted [CuN2O3] square‐pyramids with one carboxyl O atom at the apical position (d(Cu–N) = 2.017(2), 2.043(3) Å, basal d(Cu–O) = 1.936(2), 1.951(2) Å and axial d(Cu–O) = 2.389(2) Å). Two [CuN2O3] square‐pyramids are condensed via a common O–O edge to a centrosymmetric [Cu2N4O4] dimer with the Cu…Cu distance of 3.406(1) Å indicating no interaction between Cu atoms. The resultant [Cu2N4O4] dimers are interlinked by the tridentate suberato ligands to form [Cu2(phen)2(C8H12O4)4/2] layers parallel to (101). These are assembled via π‐π stacking interactions into 3D network with H2O molecules in the tunnels extending in the [010] direction.  相似文献   

18.
Two new iron–oxo clusters, viz. di‐μ‐tri­fluoro­acetato‐μ‐oxo‐bis­[(2,2′‐bi­pyridine‐κ2N,N′)(tri­fluoro­acetato‐κO)­iron(III)], [Fe2O(CF3CO2)4(C10H8N2)2], and bis(2,2′‐bi­pyridine)­di‐μ3‐oxo‐hexa‐μ‐tri­fluoro­acetato‐bis­(tri­fluoro­acetato)­tetrairon(III) tri­fluoro­acetic acid solvate, [Fe4O2(CF3CO2)8(C10H8N2)2]·CF3CO2H, contain dinuclear and tetranuclear FeIII cores, respectively. The FeIII atoms are in distorted octahedral environments in both compounds and are linked by oxide and tri­fluoro­acetate ions. The tri­fluoro­acetate ions are either bridging (bidentate) or coordinated to the FeIII atoms via one O atom only. The fluorinated peripheries enhance the solubility of these compounds. Formal charges for all the Fe centers were assigned by summing valences of the chemical bonds to the FeIII atom.  相似文献   

19.
Bis(disulfido)bridged NbIV cluster oxalate complexes [Nb2(S2)2(C2O4)4]4– were prepared by ligand substitution reaction from the aqua ion [Nb2(μ‐S2)2(H2O)8]4+ and isolated as K4[Nb2(S2)2(C2O4)4] · 6 H2O ( 1 ), (NH4)6[Nb2(S2)2(C2O4)4](C2O4) ( 2 ) and Cs4[Nb2(S2)2(C2O4)4] · 4 H2O ( 3 ). The crystal structures of 1 and 2 were determined. The crystals of 1 belong to the space group P1, a = 720.94(7) pm, b = 983.64(10) pm, c = 1071.45(10) pm, α = 109.812(1)°, β = 91.586(2)°, γ = 105.257(2)°. The crystals of 2 are monoclinic, space group C2/c, a = 1567.9(2) pm, b = 1906.6(3) pm, c = 3000.9(4) pm, β = 95.502(2)°. The packing in 2 shows alternating layers of cluster anions and of ammonium/uncoordinated oxalates perpendicular to the [1 0 1] direction. Vibration spectra, electrochemistry and thermogravimetric properties of the complexes are also discussed.  相似文献   

20.
The title compound, poly­[[[di­aqua(μ‐4,4′‐bipyridyl)­di­nickel(II)]‐bis(μ‐4,4′‐bipyridyl)‐di‐μ‐hexa­oxo­di­vana­date(2?)] 2.5‐hydrate], [Ni2­(V2O6)2­(C10H8N2)3­(H2O)2]·­2.5H2O, has been prepared hydro­thermally and characterized by elemental analyses, IR spectroscopy and single‐crystal X‐ray diffraction. The structure consists of [V2O6], [Ni­(4,4′‐bipy)4O2] and [Ni­(H2O)2­(4,4′‐bipy)2O2] polyhedra, and water of crystallization. The Ni atoms and one bipyridyl group lie on centres of symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号