首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composite latex particles based on homopolymers and graft‐copolymers composed of polynorbornene (PNB) and poly(tert‐butyl acrylate) (PtBA) were synthesized in microemulsion conditions by simultaneous combination of two distinct methods of polymerization: Ring‐opening metathesis polymerization (ROMP) and atom transfer radical polymerization (ATRP). Only one commercial compound (first generation Grubbs catalyst) was used to initiate the ROMP of norbornene (NB) and activate the ATRP of tert‐butyl acrylate (tBA). Well‐defined nanoparticles with hydrodynamic diameters smaller than 50 nm were prepared with original morphologies depending on the monomer compositions, the type of combination (polymer blend or graft‐copolymer), and the conditions of microemulsion polymerizations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
以十二烷基硫酸钠/十二烷基苯磺酸钠(SDS/SDBS)为乳化剂,过硫酸钾/亚硫酸钠(K2S2O3/Ni2SO3)为引发剂进行苯乙烯/丙烯酸丁酯(SL/BA)微孔液共聚合反应。研究了引发剂浓度[I]OR、单体总浓度[M]、乳化剂含量[E]和聚合温度T对微孔液共聚合最大反应速率Rmax和共聚物粘均分子量^-Mη的影响,测定了共聚单体的竞聚率,结果得到:Rmax∝[I]^0.98OR[M]^0.81[E]^-0.34e^-4712/T,^-Mη∝[I]^-0.27OR[M]^0.48[E]^-0.68e^2304/T;rSt=0.598,rBA=0.0206。  相似文献   

3.
将超声技术引入到无皂乳液聚合方法中,在不加入任何引发剂和乳化剂的情况下,制备了丙烯酸丁酯(BA)/苯乙烯(St)/丙烯酰胺(AM)三元共聚纳米乳胶粒.研究了不同超声时间对单体转化率、乳胶粒粒径以及乳液粘度的影响.同时还探讨了超声无皂乳液聚合机理,认为AM在聚合过程中起到了引发和稳定的作用.TEM照片表明,乳胶粒直径大约在80nm左右,FTIR及DSC分析表明产物为三元共聚物,而不是共混物.  相似文献   

4.
Here, we present the oil/water (O/W) microemulsion polymerization in three‐component microemulsions of n‐butyl acrylate, ethyl acrylate, and methyl acrylate, monomers with similar chemical structures but different water solubilities using the cationic surfactant dodecyl trimethyl ammonium bromide. The effects of monomer water solubility, initiator type and initial monomer concentration on the polymerization kinetics were studied. Reaction rates were high with final conversions between 70 and 98% depending on the monomer and reaction conditions. The final latexes were bluish, with a particle size ranging between 20 and 50 nm and polymer with molar masses in the order of 106 g mol?1. Increasing monomer water solubility resulted in a slower reaction rate, larger particles and a lower number density of particles. A higher reaction rate, larger average particle size and higher particle number density were obtained by increasing the monomer concentration. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Copolymerization of methyl methacrylate, methyl acrylate, butyl methacrylate, and butyl acrylate in turn was performed in the modified microemulsion polymerization process, i.e., continuous addition of monomer to a preemulsified system. It was found that the particle size of the copolymer microlatex did not change distinctly with the monomer composition. The estimation of emulsifier coverage on the microlatex particles indicated that the process switched from a traditional microemulsion to a normal seeded emulsion polymerization very soon after monomer dropping began. Therefore, a longer dropping time is needed to produce a microlatex with narrow dispersed particle size. Besides, in the modified microemulsion polymerization less emulsifier is needed to produce a stable microlatex. This behavior is related to the mechanism of normal seeded emulsion polymerization during monomer dropping.  相似文献   

6.
Isothermal phase diagrams of the system cetyltrimethylammonium bromide (CTAB)/n‐butanol/n‐octane/water were constructed, and the effect of the oil (n‐octane) contents on the microemulsions was studied at 40 °C. We determined the microemulsion structures of two systems, CTAB/n‐butanol/10% n‐octane/water and sodium dodecyl sulfonate (As)/n‐butanol/20% styrene/water, by conductivity measurements to investigate the polymerization of acrylamide and styrene in the two microemulsion systems. The polymerization kinetics of the water‐soluble monomer acrylamide in CTAB micelles and the different CTAB/n‐butanol/10% n‐octane/water microemulsion media [water‐in‐oil (W/O), bicontinuous (BC), and oil‐in‐water (O/W)] were studied with water‐soluble sodium bisulfite as the initiator. The maximum polymerization rate in CTAB micelles was found at the second critical micelle concentration. A mechanism of polyacrylamide formation and growth was proposed. A connection between the structures of the microemulsions and the polymerization rates was observed; the maximum polymerization rate occurred at two transition points, from W/O to BC and from BC to O/W, and the polyacrylamide molecular weights, which depended on the structures of the microemulsions, were also found. A square‐root dependence of the polymerization rates on the initiator concentrations was obtained in CTAB micelles and O/W microemulsion media. The polymerization of the oil‐soluble monomer styrene in different As/n‐butanol/20% styrene/water microemulsion media (W/O, BC, and O/W) was also investigated with different initiators: water‐soluble potassium persulfate and oil‐soluble azobisisobutyronitrile. A similar connection between the structures of the microemulsions and the conversions of styrene in CTAB/n‐butanol/10% n‐octane/water for the polymerization of acrylamide was observed again. The structures of the microemulsions had an important role in the molecular weights and sizes of polystyrene. The polystyrene particles were 10–20 nm in diameter in BC microemulsion media and 30–60 nm in diameter in O/W microemulsion media according to transmission electron microscopy. We determined the solubilization site of styrene in O/W microemulsion drops by 1H NMR spectra to analyze the results of the microemulsion polymerization of styrene. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3320–3334, 2001  相似文献   

7.
Particle nucleation in the polymerization of styrene microemulsions was found to take place throughout the polymerization as indicated by measurements of the particle number as a function of conversion. A mechanism based on the nucleation in the microemulsion droplets was proposed to explain the experimental findings although homogeneous nucleation and coagulation during polymerization were not completely ruled out. A thermodynamic model was developed to simulate the partitioning of monomer in the different phases during polymerization. The model predicts that the oil cores of the microemulsion droplets were depleted early in the polymerization (4% conversion). Due to the high monomer/polymer swelling ratio of the polymer particles, most of the monomer resides in the polymer particles during polymerization. The termination of chain growth inside the polymer particles was attributed to the chain transfer reaction to monomer. The low n? (less than 0.5) of the microemulsion system was attributed to the fast exit of monomeric radicals.  相似文献   

8.
研究了以双硫酯为链转移剂进行的均聚和嵌段共聚物的合成 .首先合成大分子链转移剂 ,得到分子量可控、多分散性系数较小的均聚物PMMA、PBMA、PEMA、PEA、PBA、PMA、PSt,多分散性系数一般小于 1 30 .在相同的条件下 ,甲基丙烯酸酯类的聚合速度最快 ,苯乙烯其次 ,丙烯酸酯类最慢 .用末端带有双硫酯基团的PSt、PBMA、PBA为链转移剂 ,加入多种第二单体聚合得到实测分子量与理论分子量接近 ,且多分散性系数较小的两嵌段聚合物 .在链转移剂和引发剂的比例为 3∶1~ 6∶1的范围内 ,聚苯乙烯同样可以作为第一嵌段得到和其它酯类单体的两嵌段聚合物 .1 H NMR方法证明了聚合物的末端带有双硫酯基团 .嵌段聚合时必须加入微量的自由基引发剂以形成大分子自由基 ,达到较好的控制聚合效果  相似文献   

9.
丙烯酸酯纳米乳液的制备与表征   总被引:4,自引:0,他引:4  
将甲基丙烯酸羟乙酯(HEMA)与甲基丙烯酸(MAA)或丙烯酸(AA)用作甲基丙烯酸甲酯(MMA)/丙烯酸丁酯(BA)乳液聚合体系的反应性助乳化剂,采用一种改进的微乳液聚合方法,合成了高单体/乳化剂比例(大于40:1)的聚丙烯酸酯纳米乳液.讨论了引发剂、乳化剂、助乳化别对乳胶粒大小和胶膜吸水率的影响,并对乳液的流体力学行为,共聚物的拉伸行为及耐水性等进行了研究.  相似文献   

10.
Polystyrene and poly(butyl acrylate) were grafted from silicon wafer surface by reversible addition‐fragmentation chain transfer (RAFT) polymerization. Three RAFT agents were immobilized onto silicon wafer through their leaving/initiating groups (R group). Grafting polymerization of butyl acrylate (BA) and styrene (St) was then carried out from the immobilized RAFT agents. The immobilization of the RAFT agents and the subsequent grafting polymerization of St and BA were evaluated by ellipsometry and X‐ray photoelectron spectroscopy. It was found that type of monomer, structure of RAFT agent, and local RAFT concentration on the surface have dramatic influences on the thickness of grafted polymer layer. The grafting polymerization with more severe rate retardation effect yielded thinner polymer films on the silicon wafer. Selection of a RAFT agent with little rate retardation was critical in the grafting polymerization to achieve thick films. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 970–978, 2008  相似文献   

11.
聚合物乳液作为基本成膜物已在建筑涂料、木器漆和工业漆方面得到了广泛应用 .由于多数小分子染料与成膜物及其他组分的相容性不够好 ,常常导致这类彩色的聚合物产品涂刷时色泽不均、涂膜在使用过程中易于变色等缺陷 .将生色基团键合到聚合物分子链上 ,可以从根本上克服因相容性差而引起的染料小分子的迁移 ,同时还可以显著提高产品的保光保色性能[1] .1 986年 ,BRIAN通过丙烯酸酯与含偶氮基烯类单体的乳液共聚合 ,制备出了一类可直接用于纺织印染行业的彩色乳液[2 ,3] .1 994年 ,SOSNOWSKI等制备出了用于荧光标签的乳液聚合…  相似文献   

12.
Atom transfer radical polymerization (ATRP) of acrylates in ionic liquid, 1‐butyl‐3‐methylimidazolium hexaflurophospate, with the CuBr/CuBr2/amine catalytic system was investigated. Sequential polymerization was performed by synthesizing AB block copolymers. Polymerization of butyl acrylate (monomer that is only partly soluble in an ionic liquid forming a two‐phase system) proceeded to practically quantitative conversion. If the second monomer (methyl acrylate) is added at this stage, polymerization proceeds, and block copolymer formed is essentially free of homopolymer according to size exclusion chromatographic analysis. The number‐average molecular weight of the copolymer is slightly higher than calculated, but the molecular weight distribution is low (Mw/Mn = 1.12). If, however, methyl acrylate (monomer that is soluble in an ionic liquid) is polymerized at the first stage, then butyl acrylate in the second‐stage situation is different. Block copolymer free of homopolymer of the first block (with Mw/Mn = 1.13) may be obtained only if the conversion of methyl acrylate at the stage when second monomer is added is not higher than 70%. Matrix‐assisted laser desorption/ionization time‐of‐flight analysis confirmed that irreversible deactivation of growing macromolecules is significant for methyl acrylate polymerization at a monomer conversion above 70%, whereas it is still not significant for butyl acrylate even at practically quantitative conversion. These results show that ATRP of butyl acrylate in ionic liquid followed by addition of a second acrylate monomer allows the clean synthesis of block copolymers by one‐pot sequential polymerization even if the first stage is carried out to complete conversion of butyl acrylate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2799–2809, 2002  相似文献   

13.
核/壳结构聚丙烯酸酯塑料增韧剂的制备与结构控制   总被引:8,自引:1,他引:8  
核/壳结构聚丙烯酸酯塑料增韧剂的制备与结构控制张会轩戴英杨海东*冯之榴(吉林工学院化工系长春130012)(中国科学院长春应用化学研究所130022)关键词聚丙烯酸酯,增韧剂,制备,种子乳液聚合1996-08-28收稿,1997-01-06修回国家自...  相似文献   

14.
The seeded microemulsion polymerization of butyl acrylate was studied with γ-rays. The hydrodynamic diameter and its distribution of polymer particles in the seeded microemulsion before and after polymerization were determined with photon correlation spectroscopy (PCS). Though there were micelles in the microemulsion, it was found that new particle formation could be ignored during polymerization. The polymerization kinetics of the seeded microemulsion was investigated. The polymerization rate increases with the dose rate and added monomer content and decreases with the seed fraction. It was completely different from that for seeded emulsion polymerization. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2631–2635, 1998  相似文献   

15.
Stable core‐shell latex was synthesized by semicontinuous seeded emulsion polymerization with core monomers consisting of styrene (St), butyl acrylate (BA), and shell monomers consisting of methyl methacrylate (MMA), eutyl acrylate (EA), and methacrylic acid (MAA). The effects of compound emulsifier amount, mass ratio of anionic/nonionic emulsifier, and initiator amount on latex performance were investigated. By particle size analysis and transmission electron microscopy (TEM) observation, results suggest that final latex particles have clearly core shell structures.  相似文献   

16.
Summary: Free radical emulsion polymerization of styrene (S) or butyl acrylate (BA) in the presence of latices of linear polyethylene (PE) prepared by catalytic emulsion polymerization affords colloidally stable multiphase latices. Coagulation of a PE/PS latex affords nanocomposites composed of small PE phases dispersed in a PS matrix, as evidenced by the large supercoolings of PE crystallization (by DSC). TEM of PE/PBA latices indicates a PBA phase around the PE particles under the emulsion polymerization conditions investigated. Films formed from these dispersions exhibit homogeneously dispersed PE particles.

Multiphase latices are obtained by free radical emulsion polymerization of butyl acrylate in the presence of latices of linear polyethylene (PE) prepared by catalytic emulsion polymerization.  相似文献   


17.
The oil/water microemulsion polymerizations of butyl acrylate initiated by a water (ammonium peroxodisulfate, APS) or oil (dibenzoyl peroxide, DBP) soluble radical initiator at different emulsifier concentrations were investigated. The rate of polymerization vs. conversion curve shows two intervals. The rate of polymerization is found to decrease with the emulsifier concentration. This finding was discussed in terms of the decrease of both radical and monomer concentration, the chain transfer to emulsifier, desorption of chaintransferred radicals, and the contribution of solution polymerization. The polymerization is faster with APS. In the APS system the rate per particle or the number of radicals per particle increases exponentially with increasing particle size. The particle size and number increase during the whole polymerization. This behavior was discussed in terms of the nucleation of monomer-containing micelles and agglomeration of primary particles during the whole polymerization. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
In order to clarify the kinetic role of oil‐soluble initiators in microemulsion polymerization, the oil‐in‐water (O/W) microemulsion polymerizations of styrene are carried out using four kinds of azo‐type oil‐soluble initiators with widely different water‐solubility. The results are compared with those observed when a water‐soluble initiator, potassium persulfate (KPS) is used. For all the oil‐soluble initiators used, the molecular weight of polymers and the average size of polymer particles do not change with the monomer conversion and the initial initiator concentration. The monomer conversion is expressed as a function of ri0.5t, where ri is the rate of radical generation in the whole reaction system and t is the reaction time. These characteristics are quite the same as those observed when KPS is used as an initiator. When the polymerizations are carried out with the rate of radical generation in the whole reaction system fixed at the same value, the rates of polymerization are almost the same for all the oil‐soluble initiators employed, irrespective of their water‐solubility, but are significantly lower (ca. 1/3) than that with KPS. Then, the following conclusions are given: (1) The radicals generated not only in the aqueous phase, but also in the micelle and polymer particle phase are almost equally effective for the polymerization. However, (2) only a small portion (ca. 1/9) of the radicals generated in both phases participate in the polymerization. (3) Bimolecular termination of a growing radical in the polymer particle with an entering radical and with a pair of radicals generated in the polymer particles is negligible, and hence, the molecular weight of polymers is determined only by chain transfer to monomer.  相似文献   

19.
Radiation polymerization of butyl acrylate was performed in a microemulsion stabilized with a mixture of sodium of 12-acryloxy-9-octadecenoic acid and sodium dodecyl sulfate in a weight ratio of 2 at room temperature. BA content in microemulsion can be successfully improved up to 40 wt% with low surfactant concentration (lower than 10 wt%). The resulted stable, translucent microlatex contain particles with average diameter from 28.1 to 38.1 nm with different monomer content. Particle size depends on the dose rate and surfactant concentration. Effects of monomer content and dose rate on the maximum polymerization rate are discussed.  相似文献   

20.
With CuBr/tetramethylguanidino‐tris(2‐aminoethyl)amine (TMG3‐TREN) as the catalyst, the atom transfer radical polymerization (ATRP) of methyl methacrylate, n‐butyl acrylate, styrene, and acrylonitrile was conducted. The catalyst concentration of 0.5 equiv with respect to the initiator was enough to prepare well‐defined poly(methyl methacrylate) in bulk from methyl methacrylate monomer. For ATRP of n‐butyl acrylate, the catalyst behaved in a manner similar to that reported for CuBr/tris[2‐(dimethylamino)ethyl]amine. A minimum of 0.05 equiv of the catalyst with respect to the initiator was required to synthesize the homopolymer of the desired molecular weight and low polydispersity at the ambient temperature. In the case of styrene, ATRP with this catalyst occurred only when a 1:1 catalyst/initiator ratio was used in the presence of Cu(0) in ethylene carbonate. The polymerization of acrylonitrile with CuBr/TMG3‐TREN was conducted successfully with a catalyst concentration of 50% with respect to the initiator in ethylene carbonate. End‐group analysis for the determination of the high degree of functionality of the homopolymers synthesized by the new catalyst was determined by NMR spectroscopy. The isotactic parameter calculated for each system indicated that the homopolymers were predominantly syndiotactic, signifying that the tacticity remained the same, as already reported for ATRP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5906–5922, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号