首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
The similar shape and electronic structure of the radical anions of 1,2,4,5‐tetracyanopyrazine (TCNP) and 1,2,4,5‐tetracyanobenzene (TCNB) suggest a similar relative orientation for their long, multicenter carbon?carbon bond in π‐[TCNP]22? and in π‐[TCNB]22?, in good accord with the Maximin Principle predictions. Instead, the two known structures of π‐[TCNP]22? have a D2h(θ=0°) and a C2(θ=30°) orientation (θ being the dihedral angle that determines the rotation of one radical anion relative to the other along the axis that passes through center of the two six‐membered rings). The only known π‐[TCNB]22? structure has a C2(θ=60°) orientation. The origin of these preferences was investigated for both dimers by computing (at the RASPT2/RASSCF(30,28) level) the variation with θ of the interaction energy (Eint) and the variation of the Eint components. It was found that: 1) a long, multicenter bond exists for all orientations; 2) the Eint(θ) angular dependence is similar in both dimers; 3) for all orientations the electrostatic component dominates the value of Eint(θ), although the dispersion and bonding components also play a relevant role; and 4) the Maximin Principle curve reproduces well the shape of the Eint(θ) curve for isolated dimers, although none of them reproduce the experimental preferences. Only after the (radical anion).? ??? cation+ interactions are also included in the model aggregate are the experimental data reproduced computationally.  相似文献   

7.
8.
9.
10.
11.
12.
[NMe4]2[TCNE]2 (TCNE=tetracyanoethenide) formed from the reaction of TCNE and (NMe4)CN in MeCN has νCN IR absorptions at 2195, 2191, 2172, and 2156 cm?1 and a νCC absorption at 1383 cm?1 that are characteristic of reduced TCNE. The TCNEs have an average central C?C distance of 1.423 Å that is also characteristic of reduced TCNE. The reduced TCNE forms a previously unknown non‐eclipsed, centrosymmetric π‐[TCNE]22? dimer with nominal C2 symmetry, 12 sub van der Waals interatomic contacts <3.3 Å, a central intradimer separation of 3.039(3) Å, and comparable intradimer C???N distances of 3.050(3) and 2.984(3) Å. The two pairs of central C???C atoms form a ?C?C???C?C of 112.6° that is substantially greater than the 0° observed for the eclipsed D2h π‐[TCNE]22? dimer possessing a two‐electron, four‐center (2e?/4c) bond with two C???C components from a molecular orbital (MO) analysis. A MO study combining CAS(2,2)/MRMP2/cc‐pVTZ and atoms‐in‐molecules (AIM) calculations indicates that the non‐eclipsed, C2 π‐[TCNE]22? dimer exhibits a new type of a long, intradimer bond involving one strong C???C and two weak C???N components, that is, a 2e?/6c bond. The C2 π‐[TCNE]22? conformer has a singlet, diamagnetic ground state with a thermally populated triplet excited state with J/kB=1000 K (700 cm?1; 86.8 meV; 2.00 kcal mol?1; H=?2 JSa?Sb); at the CAS(2,2)/MBMP2 level the triplet is computed to be 9.0 kcal mol?1 higher in energy than the closed‐shell singlet ground state. The results from CAS(2,2)/NEVPT2/cc‐pVTZ calculations indicate that the C2 and D2h conformers have two different local metastable minima with the C2 conformer being 1.3 kcal mol?1 less stable. The different natures of the C2 and D2h conformers are also noted from the results of valence bond (VB) qualitative diagram that shows a 10e?/6c bond with one C???C and two C???N bonding components for the C2 conformer as compared to the 6e?/4c bond for the D2h conformer with two C???C bonding components.  相似文献   

13.
14.
15.
16.
17.
The formation of well‐defined finite‐sized aggregates represents an attractive goal in supramolecular chemistry. In particular, construction of discrete π‐stacked dye assemblies remains a challenge. Reported here is the design and synthesis of a novel type of discrete π‐stacked aggregate from two comparable perylenediimide (PDI) dyads ( PEP and PBP ). The criss‐cross PEP ‐ PBP dimers in solution and ( PBP ‐ PEP )‐( PEP ‐ PBP ) tetramers in the solid state are well elucidated using single‐crystal X‐ray diffraction, dynamic light scattering, and diffusion‐ordered NMR spectroscopy. Extensive π–π stacking between the PDI units of PEP and PBP as well as repulsive interactions of swallow‐tailed alkyl substituents are responsible for the selective formation of discrete dimer and tetramer stacks. Our results reveal a new approach to preparing discrete π stacks that are appealing for making assemblies with well‐defined optoelectronic properties.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号