首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In aqueous solutions, amphiphilic block copolymers in which a polystyrene (PS) segment is connected to a poly(ethylene oxide) (PEO) block via a bis(2,2′:6′,2″‐ terpyridine ruthenium) complex can form micelles. Such micelles of the protomer type PS20‐[Ru]‐PEO70, according to the preparation procedure representing frozen micelles, were studied by sedimentation velocity and sedimentation equilibrium analysis in an analytical ultracentrifuge and by transmission electron microscopy, with different techniques applied for the sample preparation. The particles obtained were surprisingly multifarious in size. In ultracentrifugation experiments performed at relatively low salt concentrations, the distributions of the sedimentation coefficient s20,w showed a pronounced peak at 9.6 S and a broad, only partly separated second peak around 14 S. The molar mass of the particles at the peak was around 430,000 g/mol, corresponding to an aggregation number of approximately 85. The average hydrodynamic diameter of the particles in the peak fraction was approximately 13 nm. In electron micrographs of negatively stained samples, spheres of diameters between 10 and 25 nm were the most abundant particles, but larger ones with a wide size range were also visible. The latter particles apparently were composed of smaller ones. The data from both sedimentation analysis and electron microscopy showed that (1) the studied compound formed primary micelles of diameters around 20 nm and (2) the primary micelles had a tendency toward aggregation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3159–3168, 2003  相似文献   

2.
Summary Among the instruments for solid state characterization working with a free electron probe, the Transmission Electron Microscope (TEM) has the best lateral resolution. The application is restricted, however, by the demand that the samples need to be suitably thinned. TEMs operating in the scanning mode yield several advantages. Equipped additionally with spectrometers, the TEM becomes an Analytical TEM. Energy Dispersive X-ray Spectroscopy (EDXS) and Electron Energy Loss Spectroscopy (EELS) allow the chemical analysis of the observed details of structure; the EELS permits additionally investigations on the electron configuration and on binding relations. Technical developments have increased considerably the information possibilities, such as lateral resolution or detection sensitivity. Recently two new types of instruments are in development, the dedicated Scanning-TEM with a field emission gun, supplying scanning images and analyses up to the nanometer range, and the energy filtering (stationary beam-) microscope which yields images and diffraction diagrams with a sharpness in contrast not previously reached. In the future the construction of an aberration-free objective lens promises a further advance into the atomic dimension.  相似文献   

3.
Different techniques of analytical TEM were used to investigate Fe/Cr multilayers. These multilayers show a dependence of their electrical resistance as a function of the magnetic field. This effect called giant magnetoresistance can be utilized for example in magnetic recording heads. Typical dimensions of the single layer thickness are in the nanometer region. Therefore the microstructure of this material has been investigated by transmission electron microscopy (TEM). To get additional analytical information energy dispersive X-ray spectroscopy (EDXS) and electron energy loss spectroscopy (EELS) can be used. Received: 15 July 1997 / Revised: 5 February 1998 / Accepted: 6 February 1998  相似文献   

4.
The microstructure and magnetic domain structure of a Co-CoO obliquely evaporated tape for magnetic recording are studied by analytical electron microscopy and electron holography, respectively. While the existence of Co and CoO crystallites is confirmed by energy-filtered electron diffraction, columnar structure of the Co crystallites surrounded by the densely packed CoO crystallites is visualized by an elemental mapping method with electron energy loss spectroscopy, and the crystal orientation relation among the Co crystallites is clarified by high-resolution electron microscopy. It is found that the neighboring Co crystallites have close crystal orientations. On the other hand, electron holography reveals the magnetic flux distribution in a thin section of the tape. Although there exists the background resulting from the effect of inner potential with thickness variation, the distribution of lines of magnetic flux is found to correspond well to the recorded pattern.  相似文献   

5.
6.
Electron microscopic techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalyses (EPMA), were used to evaluate metal species and mineralogical phases associated with metal-bearing contaminated soil and industrial wastes that have been solidified and stabilized with Portland cement. Metals present in the wastes included arsenic, barium, cadmium, chromium, copper, lead, nickel, and zinc. In addition, mineral alterations and weathering features that affect the durability and containment of metals in aged remediated wastes were analyzed microscopically. Physical and chemical alteration processes identified included: freeze-thaw cracking; cracking caused by the formation of expansive minerals, such as ettringite and thaumasite; carbonation; and the movement of metals from waste aggregates into the surrounding cement matrix. Preliminary results show that although the extent of degradation after 6 years is considered slight to moderate, evaluations of durability and permanence of metals containment cannot be based on leaching and bulk chemistry analyses alone. The use of electron microscopic analyses is vital in studies that evaluate trace metal and mineral species and that attempt to predict the long-term performance of metal containment in solidified and stabilized wastes.  相似文献   

7.
The resolution of scanning tunnelling microscopy (STM) and other scanning probe microscopies is unprecedented but the techniques are fraught with limitations as analytical tools. These limitations and their relationship to the physical mechanisms of image contrast are first discussed. Some new options based on in situ STM, which hold prospects for molecular- and mesoscopic-scale analytical chemistry, are then reviewed. They are illustrated by metallic electro-crystallisation and -dissolution, and in situ STM spectroscopy of large redox molecules. The biophysically oriented analytical options of in situ atomic force microscopy, and analytical chemical perspectives for the new microcantilever sensor techniques are also discussed.  相似文献   

8.
Analytical transmission electron microscopy was applied to characterize the size, shape, real structure, and, in particular, the composition of different semiconductor quantum structures. Its potential applicability is demonstrated for heterostructures of III-V semiconducting materials and II-VI ones, viz. (In,Ga)As quantum wires on InP and (In,Ga)As quantum dots on GaAs both grown by metal organic chemical vapor deposition, and CdSe quantum dots on ZnSe grown by molecular beam epitaxy. The investigations carried out show that the element distribution even of some atomic layers can be detected by energy-dispersive X-ray spectroscopy, however, exhibiting a smeared profile. Contrary to that, sub-nanometre resolution has been achieved by using energy-filtered transmission electron microscopy to image quantum dot structures.  相似文献   

9.
10.
Multi-layer coatings on cemented carbide substrates have been investigated by analytical electron microscopy (AEM). The samples were taken from cross-sections through the coating thus enabling a study of individual layers and interfaces. Various phenomena are shown: (1) tungsten diffusion and graphite inclusions in TiC layers, (2) oxygen impurities in Ti(C, N) coatings and (3) the occurrence of titanium oxinitrides in the interface between the Al2O3 and TiN-layers.Dedicated to Professor Günther Tölg on the occasion of his 60th birthday  相似文献   

11.
G G Leppard 《The Analyst》1992,117(3):595-603
Particulates can impact directly on aquatic ecosystems by determining the availability and mode of dispersion of both contaminants and nutrients. An understanding of the mechanisms of such particle-associated phenomena is being augmented by particle analysis technology. In this context, microscopic and spectroscopic techniques, devised for problem solving, are being applied to frequently encountered sub-micrometre particulates which are 'unstable' with respect to methods of sample preparation and storage used routinely for particulates prior to analysis. These unstable aquatic particulates include 'species' sensitive to dehydration and to artificial aggregation induced by surfaces within a fractionation apparatus. These species, as defined broadly, include polysaccharide gels, hydrated humic substances, iron oxyhydroxides, viruses, the smallest micro-organisms and decomposing parts of cells. To develop predictive models of their roles as dispersing agents for contaminants, and to speciate such associations, it is necessary to characterize them in a state as close to the natural as possible. This critical review presents the state-of-the-art in the realistic characterization of hydrated sub-micrometre particulates by correlative electron microscopy (EM) used in conjunction with spectroscopy and minimally perturbing preparatory techniques. Correlative EM is a strategy for using several different kinds of microscopes and accessory techniques in a multi-method context to analyse a given specimen for different kinds of information, including relationships in three dimensions within colloid systems. Sizing, morphology and gross composition are determined on a 'per particle' basis by transmission EM used in conjunction with energy-dispersive spectroscopy, electron diffraction and molecule-specific stains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
An attachment to a scanning probe microscope was designed and constructed. The attachment allows analysis of polymer specimens subjected to tensile drawing at different temperatures directly in the microscope. High-quality images can be obtained for the same microscopic reference region with a size of 2.5 × 2.5 μm at different temperatures (ranging from 25 to 175°C) and an absolute elongation of the specimen more than three orders of magnitude above the size of the reference region.  相似文献   

13.
14.
Diociaiuti  Marco  Falchi  Mario  Paoletti  Luigi 《Mikrochimica acta》1994,114(1):285-291
The chemical composition and crystalline structure of silicate particles engulfed in human alveolar macrophages were investigated by transmission analytical electron microscopy. A crystalline ZrSiO4 and an amorphous Si2AlO4 particle were identified. Small crystalline Fe microparticles (2–4 nm), which are likely ferritin molecules, were found concentrated mainly at the amorphous particle-tissue interface.  相似文献   

15.
Soils of the Pereemnaya river catchment, East Siberia, Russia, characterized by high percentage of particles under 10 μm size and the almost total absence of clay minerals, were studied using ultra-thin window electron probe X-ray microanalysis (EPMA). Three subfractions – 10–5 μm, 1–5 μm and <1 μm were distinguished within <10 μm fraction on the basis of mineralogical composition and chemistry peculiarities. Besides the single particles characterization, the bulk chemistry of specified subfractions and their contributions to the bulk soil chemistry were evaluated. It was shown that concentrations of alkali and alkaline-earth metals within <10 μm fraction increased in the row (5–10 μm) < (1–5 μm) < (<1 μm). The presence of two mica types – low-Fe and rich-Fe – was detected in all the subfractions. Being compared with the soil bulk chemistry, the data obtained for fraction <10 μm show that this fraction is the major source of alkali and alkaline-earth metals and consequently the main contributor to element release due to weathering.  相似文献   

16.
The threshold electron impact excitation spectrum of ketene is reported. The spectrum is interpreted in comparison with results of an ab initio frozen core calculation. Triplet states (3A2, 3A1, 3B1) are observed at 3.8, 5.0 and 5.8 eV excitation energy.  相似文献   

17.
Cadmium (Cd) is a metal of high toxicity for plants. Resolving its distribution and speciation in plants is essential for understanding the mechanisms involved in Cd tolerance, trafficking and accumulation. The model plant Arabidopsis thaliana was exposed to cadmium under controlled conditions. Elemental distributions in the roots and in the leaves were determined using scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX), and synchrotron-based micro X-ray fluorescence (μ-XRF), which offers a better sensitivity. The chemical form(s) of cadmium was investigated using Cd LIII-edge (3538 eV) micro X-ray absorption near edge structure (μ-XANES) spectroscopy. Plant μ-XANES spectra were fitted by linear combination of Cd reference spectra. Biological sample preparation and conditioning is a critical point because of possible artifacts. In this work we compared freeze-dried samples analyzed at ambient temperature and frozen hydrated samples analyzed at −170 °C. Our results suggest that in the roots Cd is localized in vascular bundles, and coordinated to S ligands. In the leaves, trichomes (epidermal hairs) represent the main compartment of Cd accumulation. In these specialized cells, μ-XANES results show that the majority of Cd is bound to O/N ligands likely provided by the cell wall, and a minor fraction could be bound to S-containing ligands. No significant difference in Cd speciation was observed between freeze-dried and frozen hydrated samples. This work illustrates the interest and the sensitivity of Cd LIII-edge XANES spectroscopy, which is applied here for the first time to plant samples. Combining μ-XRF and Cd LIII-edge μ-XANES spectroscopy offers promising tools to study Cd storage and trafficking mechanisms in plants and other biological samples.  相似文献   

18.
In this paper, we present our study of the speciation of copper and hexavalent chromium sorbed onto a lignocellulosic substrate, using analytical microscopy. The lignocellulosic substrate constitutes a low-cost biomaterial that can be used in wastewater treatment. Transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDXS) was used to determine the speciation of the two metal ions on the constitutive moieties of the lignocellulosic substrate. The use of a staining agent sensitive to carbon unsaturation allowed us to differentiate between the microstructures rich in lignin entities and those rich in cellulose entities. The EDX analysis showed that metal ions are preferentially sorbed onto microstructures rich in lignin moieties. The energy electron loss spectroscopy (EELS) was used to determine the oxidation states of chromium in association with lignocellulosic moieties. We showed that the sorption process of hexavalent chromium requires the reduction of Cr(VI) into Cr(III) and the probable oxidation of lignin moieties.  相似文献   

19.
Lateral profiles of the electron probe of scanning transmission electron microscopy (STEM) were simulated at different vertical positions in a micrometers-thick carbon sample. The simulations were carried out using the Monte Carlo method in CASINO software. A model was developed to fit the probe profiles. The model consisted of the sum of a Gaussian function describing the central peak of the profile and two exponential decay functions describing the tail of the profile. Calculations were performed to investigate the fraction of unscattered electrons as a function of the vertical position of the probe in the sample. Line scans were also simulated over gold nanoparticles at the bottom of a carbon film to calculate the achievable resolution as a function of the sample thickness and the number of electrons. The resolution was shown to be noise limited for film thicknesses less than 1 μm. Probe broadening limited the resolution for thicker films. The validity of the simulation method was verified by comparing simulated data with experimental data. The simulation method can be used as quantitative method to predict STEM performance or to interpret STEM images of thick specimens.  相似文献   

20.
Practical analyses of the structures of ultrathin multilayers in tunneling magneto resistance (TMR) and Magnetic Random Access Memory (MRAM) devices have been a challenging task because layers are very thin, just 1-2 nm thick. Particularly, the thinness (approximately 1 nm) and chemical properties of the AlOx barrier layer are critical to its magnetic tunneling property. We focused on evaluating the current TEM analytical methods by measuring the thickness and composition of an AlOx layer using several TEM instruments, that is, a round robin test, and cross-checked the thickness results with an X-ray reflectometry (XRR) method. The thickness measured by using HRTEM, HAADF-STEM, and zero-loss images was 1.1 nm, which agreed with the results from the XRR method. On the other hand, TEM-EELS measurements showed 1.8 nm for an oxygen 2D-EELS image and 3.0 nm for an oxygen spatially resolved EELS image, whereas the STEM-EDS line profile showed 2.5 nm in thickness. However, after improving the TEM-EELS measurements by acquiring time-resolved images, the measured thickness of the AlOx layer was improved from 1.8 nm to 1.4 nm for the oxygen 2D-EELS image and from 3.0 nm to 2.0 nm for the spatially resolved EELS image, respectively. Also the observed thickness from the EDS line profile was improved to 1.4 nm after more careful optimization of the experimental parameters. We found that EELS and EDS of one-dimensional line scans or two-dimensional elemental mapping gave a larger AlOx thickness even though much care was taken. The reasons for larger measured values can be found from several factors such as sample drift, beam damage, probe size, beam delocalization, and multiple scattering for the EDS images, and chromatic aberration, diffraction limit due to the aperture, delocalization, alignment between layered direction in samples, and energy dispersion direction in the EELS instrument for EELS images. In the case of STEM-EDS mapping with focused nanoprobes, it is always necessary to reduce beam damage and sample drift while trying to maintain the signal-to-noise (S/N) ratio as high as possible. Also we confirmed that the time-resolved TEM-EELS acquisition technique improves S/N ratios of elemental maps without blurring the images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号