首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The asymmetric molybdenum(VI) dioxo complexes of the bis(phenolate) ligands 1,4‐bis(2‐hydroxybenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐4‐methylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐3,5‐dimethylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐3,5‐di‐tert‐butylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐4‐flurobenzyl)‐1,4‐diazepane, and 1,4‐bis(2‐hydroxy‐4‐chlorobenzyl)‐1,4‐diazepane (H2(L1)–H2(L6), respectively) have been isolated and studied as functional models for molybdenum oxotransferase enzymes. These complexes have been characterized as asymmetric complexes of type [MoO2(L)] 1–6 by using NMR spectroscopy, mass spectrometry, elemental analysis, and electrochemical methods. The molecular structures of [MoO2(L)] 1–4 have been successfully determined by single‐crystal X‐ray diffraction analyses, which show them to exhibit a distorted octahedral coordination geometry around molybdenum(VI) in an asymmetrical cis‐β configuration. The Mo? Ooxo bond lengths differ only by ≈0.01 Å. Complexes 1 , 2 , 5 , and 6 exhibit two successive MoVI/MoV (E1/2, ?1.141 to ?1.848 V) and MoV/MoIV (E1/2, ?1.531 to ?2.114 V) redox processes. However, only the MoVI/MoV redox couple was observed for 3 and 4 , suggesting that the subsequent reduction of the molybdenum(V) species is difficult. Complexes 1 , 2 , 5 , and 6 elicit efficient catalytic oxygen‐atom transfer (OAT) from dimethylsulfoxide (DMSO) to PMe3 at 65 °C at a significantly faster rate than the symmetric molybdenum(VI) complexes of the analogous linear bis(phenolate) ligands known so far to exhibit OAT reactions at a higher temperature (130 °C). However, complexes 3 and 4 fail to perform the OAT reaction from DMSO to PMe3 at 65 °C. DFT/B3LYP calculations on the OAT mechanism reveal a strong trans effect.  相似文献   

2.
Abstract. New cis‐dioxomolybdenum(VI) complexes (MoO2YxCH3OH) were synthesized using MoO2(acac)2 and 2[(1‐hydroxy‐2‐methylpropane‐2‐ylimino)methyl]phenol derivatives as tridentate ONO donor Schiff base ligands (H2Yx). MoY1 was crystallized in orthorhombic space group Pbca. The epoxidation of olefins using tert‐butyl hydroperoxide and oxidation of sulfides to the sulfoxides by hydrogen peroxide were efficiently enhanced by the catalytic activity of title MoVI complexes with excellent selectivity. The high efficiency and relative stability of the catalysts was observed by turnover number and UV/Vis investigations. The electron‐rich and bulky ligands promoted the effectiveness of the catalysts.  相似文献   

3.
The chiral (ONS) dianionic Schiff base ligand benzoin thiosemicarbazone (H2L) reacts with MoO2(acac)2 to give the polymeric complex [(MoO2L) n ] (1) (Type 1). The reaction of MoO2L with pyridine (py), 3-picoline (3-pic) or 4-picoline (4-pic) gives [MoVIO2LD] (D = py, 3-pic or 4-pic) (Type 1). Further, the reaction of [MoO2L] or [MoO2LD] with PPh3 or reaction of [MoO2L] with PPh3 (plus bpy or phen, D) in the presence of donor reagents D gives [MoIVOL] or [MoIVOLD] (Type 2). On the other hand, the reaction of [MoO2L] with hydrazides (zdhH3) such as benzoylhydrazine (bhH3), isonicotinoylhydrazine (inhH3), nicotinoylhydrazine (nhH3), salicyloylhydrazine (slhH3) and thiosemicarbazide (tscH3) produced non-oxo–diazenido complexes [MoL(zdh)] (Type 3). The complexes have been characterized by elemental analyses, molar conductance, magnetic moment, electronic, i.r. and e.s.r. spectroscopic measurements.  相似文献   

4.
Base‐assisted reaction of catechol phosphane 2 (H2L) with [M′Cl2(cod)] (cod = 1, 5‐cyclooctadiene, M′ = Pd, Pt) yielded chelate complexes [M′(HL)2] ( 7a, b ). Spectroscopic and single‐crystal X‐ray diffraction studies revealed that both complexes feature cis‐configuration of the P‐ and O‐donor atoms in solution and in the solid state. Reaction of 7a, b with acetylacetonato or alkoxide complexes [MO2(acac)2] (M = Mo, W), [VO(acac)2], [{Ti(μ‐O)(acac)2}2], or Ti(OiPr)4 gave good to excellent yields of early‐late heterometallic complexes [MOn(μ‐L)2M′] (MOn = MoO2, WO2, VO; 8a, b – 10a, b ) or [Ti(RO‐1κO)2(μ‐L ‐1κ2O, O'‐2κ2P, O)2Pd] (R = Me, iPr; 11a, b ), which were inaccessible via other synthetic routes. Spectroscopic and single‐crystal X‐ray diffraction studies revealed that the early metal centres in 8a, b, 9b and in 11b feature distorted octahedral coordination spheres with rigid transoid alignment of the catechol ring planes. Vanadium complexes 10a, b exhibit a square‐pyramidal coordination sphere with cisoid alignment of the catechol ring planes and evidence for intermolecular pairing via weak VO ··· Pd contacts in the solid state; complexes 8 , 9 do not undergo conformational inversion on the NMR time‐scale. The molecular structure of Ti complex 11a is characterized by a different orientation of the catechol moieties, which can be envisaged to picture an intermediate state during a configuration inversion process, and a strong hydrogen bridge between a terminally coordinated catecholato‐oxygen atom and a solvent molecule (MeOH). Solution NMR studies indicate that the (MeO)2Ti(μ‐L)2M' framework is in this case conformationally labile and that the MeO ligands undergo intermolecular dynamic exchange with the solvent.  相似文献   

5.
IntroductionDuringthepastdecades ,thedevelopmentoftheco ordinationchemistryofmolybdenum(VI)focusedonmet al oxygenclusterscharacterizedbyfascinatingstructural,electrochemical,catalytic ,magnetic ,medicinal,andphotophysicalproperties ,1whichareoffundamentaland…  相似文献   

6.
This article deals with isomeric ruthenium complexes [RuIII(LR)2(acac)] (S=1/2) involving unsymmetric β‐ketoiminates (AcNac) (LR=R‐AcNac, R=H ( 1 ), Cl ( 2 ), OMe ( 3 ); acac=acetylacetonate) [R=para‐substituents (H, Cl, OMe) of N‐bearing aryl group]. The isomeric identities of the complexes, cct (ciscis‐trans, blue, a ), ctc (cis‐trans‐cis, green, b ) and ccc (ciscis‐cis, pink, c ) with respect to oxygen (acac), oxygen (L) and nitrogen (L) donors, respectively, were authenticated by their single‐crystal X‐ray structures and spectroscopic/electrochemical features. One‐electron reversible oxidation and reduction processes of 1 – 3 led to the electronic formulations of [RuIII(L)(L ? )(acac)]+ and [RuII(L)2(acac)]? for 1 +‐ 3 + (S=1) and 1? – 3? (S=0), respectively. The triplet state of 1 +‐ 3 + was corroborated by its forbidden weak half‐field signal near g≈4.0 at 4 K, revealing the non‐innocent feature of L. Interestingly, among the three isomeric forms ( a – c in 1 – 3 ), the ctc ( b in 2 b or 3 b ) isomer selectively underwent oxidative functionalization at the central β‐carbon (C?H→C=O) of one of the L ligands in air, leading to the formation of diamagnetic [RuII(L)(L ′ )(acac)] (L ′ =diketoimine) in 4 / 4′ . Mechanistic aspects of the oxygenation process of AcNac in 2 b were also explored via kinetic and theoretical studies.  相似文献   

7.
New dinuclear pentacoordinate molybdenum(V) complexes, [Mo2VO3L2] [L = thiosemicarbazonato ligand: C6H4(O)CH:NN:C(S)NHR′ and C10H6(O)CH:NN:C(S)NHR′; R′ = H, CH3, C6H5) were obtained either by oxygen atom abstraction from MoVIO2L with triphenylphosphine or by using [Mo2O3(acac)4] in the reaction with the corresponding ligands H2L. Crystal and molecular structure of [Mo2O3{C6H4(O)CH:NN:C(S)NHC6H5}2] · CH3CN has been determined by the single‐crystal X‐ray diffraction method.  相似文献   

8.
Mononuclear [MoO2LD], and dinuclear [MoO2L]2 or [MoO2L]2 · D dixomolybdenum(VI) complexes have been prepared by the reaction of tridentate Schiff‐base ligands L with [MoO2(acac)2]. The Schiff‐base ligands have been synthesized from salicylaldehyde ( 1 , 1a , 1c , 1d ), 2‐hydroxy‐1‐naphthaldehyde ( 2 , 2c ) and 2‐hydroxy‐3‐methoxybenzaldehyde ( 3a , 3b , 3c , 3d , 3e ) with 2‐amino‐p‐cresol. All prepared complexes consist of cis‐MoO22+core coordinated by Schiff‐base ligand through two deprotonated hydroxyl groups and one imino nitrogen atom. The usual octahedral coordination around the molybdenum atoms is completed by the neutral ligand D (methanol, ethanol, dimethyl sulfoxide, imidazole or 4, 4′‐bipyridine). All compounds were characterized by elemental analyses, IR spectroscopy and some of them by X‐ray crystallography ( 1a , 2c , 3a , 3b , 3c and 3e ).  相似文献   

9.
Reactions of an acidified aqueous solution of Na2MoO4 · 2H2O with 3-mercaptopropionic acid, 2-mercaptomethylethanoate and 3-mercaptomethyl propanate yield blue oxo-bridged MoV complexes of the type [Mo2O3L4], whereas corresponding reactions with 2-aminophenol, 2-aminobenzyl alcohol, salicylaldehyde and 2-methyl-8-hydroxyquinoline, yield yellow dioxomolybdenum(VI) complexes, [MoO2L′2]. All these coloured solids are sparingly soluble, even in coordinating solvents. They have been characterized by elemental and spectroscopic analysis.  相似文献   

10.
The crystal structure of the title compound, poly­[bis‐[copper(I)‐μ‐(4,4′‐bipyridyl)‐N:N′]‐μ‐dimolybdato‐O:O′],[Cu2(C10H8N2)2{Mo2O7}]n, consists of {Mo2O7}2? units (with the central O atom lying on twofold symmetry axes) and [Cu(4,4′‐bipy)]nn+ chains (bipy = bipyridyl); the chains are generated by a c‐glide‐plane operation. The {Mo2O7}2? units are covalently bridged to two [Cu(4,4′‐bipy)]nn+ chains, forming a complex with a bridged double‐chain structure. The Cu—O and Cu—N distances are 2.191 (3) and 1.933 (3) Å, respectively.  相似文献   

11.
A novel organic-inorganic hybrid compound {[Cu(2,2′-bpy)2]2Mo8O26} has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in the orthorhombic space group, Pna21,with a=2.4164(5),b=1.8281(4),c=1.1877(2)nm,V=5.247(2)nm^3,Z=4,and final R1=0.0331,wR2=0.0727.The structure consists of discrete {[Cu(2,2′-bpy)2]2Mo8O26} clusters,constructed from a β-octamolybdate subunit[Mo8O26]^4- covalently bonded to two [Cu(2,2′-bpy)2]^2 coordination complex cations via bridging oxo groups.In addition,the spectroscopic properties and thernal behavior of this compound have been investigated by spectroscopic techniques (UV-vis,IR,Raman and EPR spectra) and TG analysis.  相似文献   

12.
Two new mixed alkaline uranyl molybdates CsNa3[(UO2)4O4Mo2O8] ( 1 ) and Cs2Na8[(UO2)8O8(Mo5O20)] ( 2 ) have been obtained by high‐temperature solid state reactions. Their crystal structures have been solved by direct methods: Compound 1 : triclinic, P , a = 6.46(1), b = 6.90(1), c = 11.381(2) Å, α = 84.3(1), β = 91.91(1), γ = 80.23(1)°, V = 488.6(2) Å3, R1 = 0.06 for 2865 unique reflections with |Fo| ≥ 4σF; Compound 2 : orthorhombic, Ibam, a = 6.8460(2), b = 23.3855(7), c = 12.3373(3) Å, V = 1975.2(1) Å3, R1 = 0.049 for 2120 unique reflections with |Fo| ≥ 4σF. The structure of 1 contains complex sheets of UrO5 pentagonal bipyramids and molybdenum polyhedra. The sheets have [(UO2)2O2(MoO5)] composition. Natrium and cesium atoms are located in the interlayer space. Cesium atoms are situated between the molybdenum clusters, whereas natrium atoms are segregated between the uranyl complexes. The large Cs+ ions are localized between the Mo2O9 groups and force the molybdenum polyhedra to rotate relative to the [(UO2)2O2(MoO5)] sheets. Such rotation is impossible for U6+ polyhedra due to their rigid edge‐sharing complexes. The distance between the U6+ polyhedra vertices of neighboring layers is 3.8 Å, that allows the Na+ ion to be positioned between the uranyl groups. The crystal structure of 2 is based upon a framework consisting of [(UO2)2O2(MoO5)] sheets parallel to (010). The sheets are linked into a 3‐D framework by sharing vertices with the Mo(2)O4 tetrahedra, located between the sheets. Each MoO4 tetrahedron shares two of its corners with two MoO6 octahedra in the sheet above, and the other two with MoO6 octahedra of the sheet below. Thus four MoO6 octahedra and one MoO4 tetrahedron form chains of composition Mo5O18. The resulting framework has a system of channels occupied by the Cs+ and Na+ ions.  相似文献   

13.
The catalytic performances of several bis(acetylacetonato)metal complexes [Cu(acac)2, Zn(acac)2, TiO(acac)2, VO(acac)2, MoO2(acac)2, and WO2(acac)2] were investigated for the crosslinking reaction via transesterifications in the ethylene‐vinyl acetate copolymer/tetraethoxysilane (EVA/TEOS) composite system by means of dynamic attenuated total reflectance Fourier transform infrared, solvent swelling, and solid‐state 29Si cross polarization/magic angle spinning nuclear magnetic resonance techniques. Results of the kinetic examination revealed that MoO2(acac)2 and WO2(acac)2 exhibited a higher catalytic activity than di‐n‐butyltin(IV) oxide, which is a catalyst most commonly used for the transesterification process in polymer system, but has a toxic effect on the environmental health. And furthermore, the crosslink density and final siloxane network structure of crosslinked EVA/TEOS composites are found to be greatly correlated with the catalyst used. On the basis of the SN2‐Si pathway, a plausible catalytic mechanism of MoO2(acac)2 and WO2(acac)2 was proposed for the crosslinking reaction via transesterifications of the vinyl acetate moieties in EVA backbone with the ethoxysilane groups in one TEOS molecule. The findings in this study may fill the blank in the high performance and environmentally friendly catalyst in the field of the crosslinking reactions in polymer system and provide useful clue for other transesterifications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Two new molybdenum phosphate complexes, [Cu2(phen)4(μ‐Cl)][PMo12O40]·H2O (phen = 1,10‐phenanthroline) ( 1 ) and (Hbpy)[CuI(bpy)]2[PMoV2MoVI10O39] (bpy = 4,4′‐bipyridine) ( 2 ), have been prepared under mild hydrothermal conditions and structurally characterized by single‐crystal X‐ray diffraction. Compounds 1 and 2 crystallize in triclinic system, space group , with a = 12.5458(7) Å, b = 13.4486(8) Å, c = 21.2406(12) Å, α = 99.7020(10)°, β = 94.2320(10)°, γ = 95.0890(10)°, V = 3504.2(3) Å3 and Z = 2 for 1 , and a = 10.7871(6) Å, b = 10.9016(6) Å, c = 12.7897(7) Å, α = 96.8500(10)°, β = 110.0850(10)°, γ = 103.5800(10)°, V = 1339.74(13) Å3 and Z = 1 for 2 . Compound 1 contains a [Cu2(phen)4(μ‐Cl)]3+ cation in which two similar [Cu(phen)2] units are bridged by one chlorine atom. Compound 2 contains one‐dimensional straight chain of Keggin polyoxoanions [PMoV2MoVI10O39]n3? and two linear cationic chains of [CuI(bpy)]nn+. The molecular packing shows a two‐dimensional network, which is formed by the cross of the linear Keggin anions and Cu‐bpy cations.  相似文献   

15.
By using cyclohexane‐1,2‐diamine (chxn), Ni(ClO4)2 ? 6H2O and Na3[Mo(CN)8] ? 4H2O, a 3D diamond‐like polymer {[NiII(chxn)2]2[MoIV(CN)8] ? 8H2O}n ( 1 ) was synthesised, whereas the reaction of chxn and Cu(ClO4)2 ? 6H2O with Na3[MV(CN)8] ? 4H2O (M=Mo, W) afforded two isomorphous graphite‐like complexes {[CuII(chxn)2]3[MoV(CN)8]2 ? 2H2O}n ( 2 ) and {[CuII(chxn)2]3[WV(CN)8]2 ? 2H2O}n ( 3 ). When the same synthetic procedure was employed, but replacing Na3[Mo(CN)8] ? 4H2O by (Bu3NH)3[Mo(CN)8] ? 4H2O (Bu3N=tributylamine), {[CuII(chxn)2MoIV(CN)8][CuII(chxn)2] ? 2H2O}n ( 4 ) was obtained. Single‐crystal X‐ray diffraction analyses showed that the framework of 4 is similar to 2 and 3 , except that a discrete [Cu(chxn)2]2+ moiety in 4 possesses large channels of parallel adjacent layers. The experimental results showed that in this system, the diamond‐ or graphite‐like framework was strongly influenced by the inducement of metal ions. The magnetic properties illustrate that the diamagnetic [MoIV(CN)8] bridges mediate very weak antiferromagnetic coupling between the NiII ions in 1 , but lead to the paramagnetic behaviour in 4 because [MoIV(CN)8] weakly coordinates to the CuII ions. The magnetic investigations of 2 and 3 indicate the presence of ferromagnetic coupling between the CuII and WV/MoV ions, and the more diffuse 5d orbitals lead to a stronger magnetic coupling interaction between the WV and CuII ions than between the MoV and CuII ions.  相似文献   

16.
A reaction of [MoO2(acac)2] (where acac = acetylacetonate) with two hydrazone ligands in methanol yields two mononuclear molybdenum(VI) oxo complexes with the general formula [MoO2L(CH3OH)], where L = L1=(4-nitrophenoxy)acetic acid [1-(5-chloro-2-hydroxyphenyl)methylidene]hydrazide (H2L1) and L = L2=4-dimethylaminobenzoic acid [1-(2-hydroxy-3-methoxyphenyl)methylidene]hydrazide (H2L2). The crystal and molecular structures of the complexes are determined by the single crystal X-ray diffraction method. All of the investigated compounds are further characterized by the elemental analysis, FT-IR spectra, and thermogravimetric analysies. Single crystal X-ray structural studies indicate that hydrazone ligands coordinate to MoO2 cores through enolate oxygen, phenolate oxygen, and azomethine nitrogen atoms. The Mo atoms in both complexes are in octahedral coordination.  相似文献   

17.
A straightforward aqueous synthesis of MoO3?x nanoparticles at room temperature was developed by using (NH4)6Mo7O24?4 H2O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as‐prepared products are nanoparticles with diameters of 90–180 nm. The diffuse reflectance UV‐visible‐near‐IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible‐light and near‐infrared region, such nanostructures exhibit an enhancement of activity toward visible‐light catalytic hydrogen generation. MoO3?x nanoparticles synthesized with a molar ratio of MoVI/MoV 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as‐prepared plasmonic MoO3?x nanoparticles, which reveals its potential application in visible‐light catalytic hydrogen production.  相似文献   

18.

The oxalato complex of a polyoxomolybdovanadate, K6[Mo6V2O24(C2O4)2]·6H2O has been obtained by reaction of potassium molybdate, ammonium vanadate and tartaric or ascorbic acid. Such conversion of dicarboxylate into oxalate ions indicates the catalytic role of molybdenum. Complexes of analogous composition also were obtained in the reactions of MoO3, V2O5 and potassium oxalate, or M 2CO3 (M = Rb, Cs) and oxalic acid. The centrosymmetrical molybdovanadate anion [Mo6V2O24(C2O4)2]6- consists of six MoO6 and two VO6 edge-sharing octahedra to give the n -[Mo6O26]4- structure. All complexes were characterized by powder and single crystal X-ray analyses, ESR and IR spectra and TG and DSC measurements.  相似文献   

19.
The title compound, {(C12H13N2)2[Mo5O16]}n, was synthesized under hydro­thermal conditions. The structure contains a two‐dimensional layer, constructed from [(Mo4O14)n]4n chains linked through MoO6 octahedra, which lie across twofold axes. The [(Mo4O14)n]4n chain consists of [Mo4O14]4− clusters connected to one another by sharing their MoO5 square‐pyramidal and MoO6 octahedral vertices in an anti disposition. The layers are linked by the cation, to which they are connected via N—H⋯O hydrogen bonds.  相似文献   

20.
Hydrothermal reactions of MoO3, CuO, and pyrazine‐2‐carboxylic acid (Hpzca) resulted in two polymeric complexes, {[Cu5(pzca)6(H2O)4][Mo8O26]}n ( 1 ; pzca=pyrazine‐2‐carboxylate) and [Mo3Cu2O10(pz)]n ( 2 ; pz=pyrazine). The former crystallized in the monoclinic space group P21/c with a=10.805(3) Å, b=13.061(5) Å, c=13.337(10) Å, β=90.20(4)°, V=2729(2) Å3, and Z=2. The later crystallized in the orthorhombic space group Pnma with a=12.385(2) Å, b=7.6044(9) Å, c=12.7880(14) Å, V=1204.4(2) Å3, and Z=4. X‐Ray diffraction analysis revealed that 1 possesses a two‐dimensional wave‐like structure, formed from a zigzag one‐dimensional chain, and 2 is a three‐dimensional network structure formed from a one‐dimensional chain and a pz bridging ligand. The temperature‐dependent magnetic behavior of 1 was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号