首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(styrene‐maleic anhydride)‐montmorillonite nanocomposites were prepared by intercalation of layered montmorillonite with the polymer ions. Synthetic approaches including polymerization and phosphonium salt formation have been used for polymer intercalation and dispersion of the host layers in the polymer matrix. The ratio of the mineral in the composites ranged 30–50%. Wide‐angle X‐ray diffraction (WAXD) disclosed that the d(001) spacing between the internal lamellar surface were only expanding to about 13 and 15 Å according to the type of phosphonium salt suggesting packing of polymer molecules between the layers. Examination of these materials by scanning and transmission electron microscopy showed spherical nano size particles of average diameter, 350 nm. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, preparation and properties of different nanoclays modified by organic amines (octadecyl amine, a primary amine, and hexadecyltrimethylammonium bromide, a tertiary amine) and brominated polyisobutylene‐co‐paramethylstyrene (BIMS)‐clay nanocomposites are reported. The clays and the rubber nanocomposites have been characterized with the help of Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X‐ray diffraction (XRD). The X‐ray diffraction peaks observed in the range of 3 °–10 ° for the modified clays disappear in the rubber nanocomposites. TEM photographs show predominantly exfoliation of the clays in the range of 12 ± 4 nm in the BIMS. In the FTIR spectra of the nanocomposites, there are common peaks of virgin rubber as well as those of the clays. Excellent improvement in mechanical properties like tensile strength, elongation at break, and modulus is observed on incorporation of the nanoclays in the BIMS. Structure‐property correlation in the above nanocomposites is attempted. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4489–4502, 2004  相似文献   

3.
A positive‐type photosensitive polybenzoxazole (PSPBO), based on a poly(o‐hydroxy amide) (PHA), the dissolution inhibitor (DI) 9,9‐bis(4‐tert‐butoxycarbonyloxyphenyl)fluorene (t‐Boc BHF), and the photoacid generator (5‐propylsulfonyloxyimino‐5H‐thiophene‐2‐ylidene)‐(2‐methylphenyl)acetonitrile (PTMA), was developed. Several new tert‐butoxycarbonylated compounds as DIs for PSPBOs were prepared from phenolic compounds having a cardolike structure with di‐tert‐butyl dicarbonate in the presence of 4‐dimethylaminopyridine. Among them, t‐Boc BHF and 5,5′,6,6′‐tetra(tert‐butoxycarbonyl)‐3,3,3′,3′‐tetramethyl‐1,1′‐spirobiindane acted as excellent DIs, giving a large dissolution contrast between the exposed and unexposed areas in a 2.38 wt % tetramethylammonium hydroxide solution (TMAHaq)/5 wt % iso‐propanol (i‐PrOH). The dissolution behavior of this PSPBO system was studied in relation to the PTMA and t‐Boc BHF loadings and postexposure baking temperature. A PSPBO consisting of PHA (77 wt %), t‐Boc BHF (20 wt %), and PTMA (3 wt %) exhibited a sensitivity of 34 mJ/cm2 and a contrast of 5.8 when exposed to 365‐nm light (i‐line) and developed with an aqueous alkaline developer, 2.38 wt % TMAHaq/5 wt % i‐PrOH. A clear, positive image with 6‐μm features and a 10‐μm‐thick pattern with high sensitivity and contrast was produced by contact printing and converted into polybenzoxazole patterns upon heating at 350 °C for 1 h. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 661–668, 2007  相似文献   

4.
Poly(amic acid) was synthesized with a low‐temperature solution polymerization of 3,3′‐dihydroxybenzidine and pyromellitic dianhydride in N,N‐dimethylacetamide. The cast films were thermally treated at various temperatures. The polyimide containing the hydroxyl group was rearranged by decarboxylation, resulting in a fully aromatic polybenzoxazole at temperatures higher than 430 °C. These stepwise cyclizations were monitored with elemental analysis, Fourier transform infrared, and nuclear magnetic resonance. Microanalysis results confirmed the chemical compositions of poly(amic acid), polyimide, and polybenzoxazole, respectively. A cyclodehydration from poly(amic acid) to polyimide occurred between 150 and 250 °C in differential scanning calorimetry, and a cyclodecarboxylation to polybenzoxazole appeared at 400–500 °C. All the samples were stable up to 625 °C in nitrogen and displayed excellent thermal stability. Polybenzoxazole showed better thermal stability than polyimide, but polyimide exhibited better mechanical properties than polybenzoxazole. However, polyimide showed a crystalline pattern under a wide‐angle X‐ray, whereas polybenzoxazole was amorphous. The precursor poly(amic acid) was readily soluble in a variety of solvents, whereas the polyimide and polybenzoxazole were not soluble at all. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2537–2545, 2000  相似文献   

5.
Complete exfoliation of montmorillonite during Ti‐based Ziegler‐Natta polymerization of ethylene has been successfully carried out by using montmorillonite (MMT‐OH) modified with intercalation agents containing hydroxyl groups. Hydroxyl groups in intercalation agents offer facile reactive sites for anchoring catalysts in between silicate layers. Comparison of exfoliation characteristics between MMT‐OH and non‐intercalated montmorillonite showed that the feasibility of exfoliation during ethylene polymerization was highly dependent on the catalyst fixation method.  相似文献   

6.
Poly(ethylene terephthalate‐co‐ethylene naphthalate) (PETN)/organoclay was synthesized with the solution intercalation method. Hexadecylamine was used as an organophilic alkylamine in organoclay. Our aim was to clarify the intercalation of PETN chains to hexadecylamine–montmorillonite (C16–MMT) and to improve both the thermal stability and tensile property. We found that the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PETN/C16–MMT hybrid films. Maximum enhancement in both the ultimate tensile strength and initial modulus for the hybrids was observed in blends containing 4 wt % C16–MMT. Below a 4 wt % clay loading, the clay particles could be highly dispersed in the polymer matrix without a large agglomeration of particles. However, an agglomerated structure did form in the polymer matrix at a 6 wt % clay content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2581–2588, 2001  相似文献   

7.
8.
9.
Polymer blends represent an important class of materials in engineering applications. The incorporation of clay nanofiller may provide new opportunities for this type of materials to enhance their applications. This article reports on the effects of clay on the structure and properties of compatibilized and noncompatibilized polymer blends and presents a detailed process for quantitative analysis of the elastic moduli of polymer blend/clay nanocomposites, based on immiscible polystyrene/polypropylene (PS/PP) blends with or without maleated PP as the compatibilizer. The results show that in the noncompatibilized PS/PP/clay nanocomposite clay locates solely in the PS phase, whereas in the compatibilized nanocomposite clay disperses in both phases. The addition of clay to both polymer blends reduces the domain size significantly, modifies the crystallinity and improves the stiffness. The Mori–Tanaka and Christensen's models offer a reasonably good prediction of the elastic moduli of both types of nanocomposites. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

10.
Bis(cyclopentadienyl)‐zirconium dichloride (Cp2ZrCl2) and (1,4‐bis(2,6‐diisopropylphenyl)‐acenaphthenediimine) dichloronickel (Ni‐diimine) were supported on montmorillonite (MMT) pretreated with triisobutylaluminum and 10‐undecence‐1‐ol to produce in situ polyethylene–clay nanocomposites in a gas‐phase reactor. The development of the nanocomposite morphology was investigated with transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X‐ray diffraction (XRD) analysis. During polymerization, the MMT layers were partially exfoliated by the growing polymer chains, starting from the openings of the clay galleries, but intercalation and exfoliation occurred only to a certain extent. The thermal properties of the nanocomposites we also analyzed by differential scanning calorimetry (DSC).

  相似文献   


11.
The syntheses and properties of hyperbranched poly(o‐hydroxyamide) [poly(HAB‐BCC)‐ABP], poly[o‐(t‐butoxycarbonyl)amide] [poly(HAB‐BCC)‐ABP‐t‐BOC], and polybenzoxazole [poly(HAB‐cycloBCC)] were examined. Poly(HAB‐BCC)‐ABP was obtained from the polycondensation reaction of 3,3‐dihydroxy‐4,4′‐diaminobiphenyl (HAB) as an A2‐monomer and 1,3,5‐benzenetricarboxylchloride (BCC) as a B3‐monomer with 2‐amino‐4‐t‐butylphenol (ABP) in NMP in the presence of pyridine for 24 h. The reaction of poly(HAB‐BCC)‐ABP and di‐t‐buthylcarbonate (DiBOC) was performed to obtain the corresponding poly(HAB‐BCC)‐ABP‐t‐BOC with pendant t‐BOC groups. The thermal cyclodehydration of poly(HAB‐BCC)‐ABP‐t‐BOC was carried out in the film sate at 400 °C, affording the poly(HAB‐cyclo‐BCC) in quantitative yield. Furthermore, the solubilities and thermal properties of these polymers were examined. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3640–3649, 2006  相似文献   

12.
13.
14.
A polystyrene‐modified epoxidized novolac resin/montmorillonite nanocomposite was fabricated and characterized successfully. For this purpose, novolac resin (NR) was epoxidized through the reaction of phenolic hydroxyl group with epichlorohydrin in super basic medium to produce epoxidized novolac resin (ENR). Afterward, a polystyrene was synthesized by atom transfer radical polymerization (ATRP) technique, and then brominated at the benzylic positions using N‐bromosuccinimide (NBS). The brominated polystyrene (PSt‐Br) was reacted with ethanolamine in basic medium in order to afford an amine‐functionalized polystyrene (PSt‐NH2). An organo‐modified montmorillonite (O‐MMT) was synthesized through the treatment of MMT with hexadecyl trimethyl ammonium chloride salt. Finally, ENR‐PSt/MMT nanocomposite was fabricated through curing a mixture of ENR (70 wt.%) and O‐MMT (5 wt.%) with PSt‐NH2 (25 wt.%). Transition electron microscopy (TEM) and powder X‐ray diffraction (XRD) analysis revealed that the fabricated nanocomposite has an exfoliated structure. Thermal property studies using thermogravimetric analysis (TGA) showed that the curing of ENR by PSt‐NH2, as well as incorporation of a small amount of MMT have synergistic effect on the thermal stability of the ENR resin.  相似文献   

15.
The resistance to air permeation was investigated for ­an intercalated clay/acrylonitrile‐butadiene copolymer ­nanocomposite. The nanocomposite is prepared by melt mixing the organo‐treated montmorillonite into a rubber matrix, together with peroxide curative, and crosslinked by conventional compression molding for typical rubbers. In the case of intercalated nanocomposite, the air permeability decreases considerably with increasing clay content, and the decreasing trend agrees reasonably with the Neilson's tortuous model. No considerable improvement is found when the pure montmorillonite is added. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
A series of poly(o‐/m‐toluidine‐coo‐/m‐chloroaniline) copolymers of different compositions were synthesized by an emulsion method with ammonium persulfate as the oxidant. The conductivity of the copolymers was two to five orders of magnitude higher than that of the homopolymers poly(o‐toluidine) and poly(m‐chloroaniline). Among the copolymers, the copolymer of o‐toluidine and m‐chloroaniline exhibited a maximum conductivity of 0.14 S cm?1. The conductivity of these copolymers was also higher than that of poly(aniline‐co‐chloroaniline). The properties of the copolymers were greatly influenced by the positions of the substituents and the concentrations of the individual monomers in the feed. All the copolymers were completely soluble in polar solvents such as dimethyl sulfoxide and showed higher heat stability as the chloroaniline concentration increased. These effects could be interpreted in terms of extensive hydrogen bonding and interchain linking and, therefore, higher electron delocalization in these copolymers due to the presence of electron‐rich toluidine rings adjacent to electron‐deficient chloroaniline. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1579–1587, 2005  相似文献   

17.
We investigated the effects of the multilayer polymer‐clay nanohybrid passivation films on the stability of pentacene organic thin‐film transistors (OTFTs) exposed to air and UV irradiation. Well‐ordered multilayer films were deposited by the spin‐assisted layer‐by‐layer assembly method using photocrosslinkable poly(vinyl alcohol) with the N‐methyl‐4(4′‐formylstyryl)pyridinium methosulfate acetal group (SbQ‐PVA) and Na+‐montmorillonite in a water‐based solution process. When photocrosslinked, these SbQ‐PVA/clay multilayers were found to serve as excellent barriers to O2 and UV‐light. Moreover, when used as passivation layers, they enhanced the stability of pentacene OTFT devices exposed to air and UV radiation.  相似文献   

18.
The reaction of lithium diarylcuprate(I) reagents with o‐bromobenzoyl chloride has been investigated. In general, the reaction proceeds well to give synthetically useful o‐bromobenzophenone derivatives as the major product. It is suggested that a minor substituent effect, whereby diarylcuprate reagents containing an ortho or meta substituent react more favourably, may be attributed to small changes in the structure of the organometallic reagent. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号