首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UV-curable self-emulsified polyurethane acrylates were synthesized in acetone and then dispersed in water. The effect of acetone’s ratio on the emulsification of the polyurethane acrylate was investigated. With a proper amount of acetone as a solvent, stable emulsion with small particle size and narrow particle size distribution was successfully produced and the viscosity during the process of emulsification was greatly reduced. However, stable emulsion could not be obtained when the acetone level was larger than a critical value. A ternary phase diagram was mapped. It was found that only those systems experiencing a phase inversion process lead to a stable emulsion. The carboxylic content is another important factor influencing the properties of emulsion and the process of emulsification. The effect of the carboxylic content on the emulsification was also studied in the experiment. There was another critical carboxylic content for stability. Stable emulsions with small drop sizes less than 50 nm were produced.  相似文献   

2.
Previous work has identified distinct regions, on a phase inversion map, for dispersions of polyurethane ionomer (PUI) and water. In this study, events that occur, before, during, and after catastrophic phase inversion (provoked by adding water to polyurethane ionomer (PUI) in the RII regions of the phase inversion map) have been studied in order to characterise the inversion mechanism. Before phase inversion, initial water addition leads to the hydration of ionic groups and eventually water drops start to form in the hydrophobic portions of the polymer matrix. At the phase inversion point, the PUI-water interface restructures and the ionomer disintegrates into a dispersion of spherical particles enclosed by a continuous aqueous phase. It is suggested that pseudo-drop structures are formed simultaneously during the production of the small polymer-in-water drops. After phase inversion, water addition dilutes the emulsion and destroys the apparent ionic-centre-rich environment surrounding any isolated ionic groups on a particle surface. The larger water-in-polymer drops are likely to have participated in the phase inversion and the smaller water drops form the primary water drops in the multiple emulsions. The resultant emulsions are stable over a period of a few months but very few multiple drops remain after 1(1/4) years.  相似文献   

3.
A new synthesis for polyurethane dispersions was developed using both trimellitic anhydride alone and in combination with dimethylol propionic acid as internal emulsifiers. During synthesis of the polyurethane ionomer, Fourier transform infrared spectroscopy was used for monitoring and characterizing both the polyaddition step and the anhydride ring opening process. Depending on the synthesis route, the carboxylic groups are either located at the end of the polymer backbone or additionally statistically distributed within the polymer chain itself. The effect of the carboxylic group's position on the chemical and physical properties, with particular reference to particle size and pH, was analyzed. Three different polyols were used to synthesize the polyurethane dispersions. Driven by the current trend to find renewable alternatives to petrochemical‐based raw materials, one bio‐based polyol was included for the synthesis. The effect of the different structures of the polyurethane dispersions (petrochemical‐ or bio‐based polyols) on mechanical properties and thermal behavior was investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 680–690  相似文献   

4.
Nano-particle segmented polyurethane anionomer dispersions with ions either on the soft segment or on the hard segment were synthesised using 2,2-bis(hydroxymethyl) propionic acid and 5-sodiosulfo-1,3-benzenedicarboxylic acid as ionic centre. The resulting polyurethane dispersions were characterized for their particle size, reduced viscosity and hydrolytic stability in the presence of the aqueous phase during storage. At similar ionic contents, the polyurethanes that contain ionic groups on their soft segment had smaller particle sizes than those that contain ionic groups on the hard segment due to the effectiveness of the sulphonate ionic groups incorporated in the former. The reduced viscosity of the anionomers in dimethylformamide (DMF) showed typical polyelectrolyte effect that can be eliminated by the addition of LiBr. The hydrolysis study conducted over 2-years indicated that polyurethanes in which the ions were located on the hard segment had better hydrolytic stability in aqueous environment than those with ions located on the soft segment. We attributed this due to the fact that unsolvated hydrophobic polyester segments were packed in the interior of the particles while the strongly hydrated urethane segments with mutually repelling carboxylate ions were situated on the outside surface of the particles. The polyester groups prone to hydrolytic attack were thus protected against hydrolysis as effectively as in the dry solid form.  相似文献   

5.
A series of cationic waterborne polyurethane dispersions (SiPU) modified with hydroxysilane (HPMS) were successfully synthesized based on poly(oxytetramethylene) glycols (PTMG) and isophorone isocyanate (IPDI), and the films were obtained by casting the dispersions on tetrafluoroethylene (TFE) plates. Effects of HPMS content on micromorphology, particle size of the dispersions were studied, as well as thermal properties, phase behavior and surface structure of the films. The particles had the morphology of a solid sphere, with particle size varying from 17.1 nm to 114.4 nm corresponding to the increase of HPMS concentration, which can be attributed to the increase of interfacial tension. XPS spectra indicated the surface migration of Si element in the process of film forming, and the SiPU surface was mainly composed of soft segments. DSC analysis, together with TG-DTG-DTA results demonstrated the HPMS soft segment merged with the transition region of PU matrix, forming part of polyurethane backbone, but an improved microphase separation was observed when HPMS concentration greater than 15%. It was also found that incorporation of flexible HPMS prevented the degradation of polyurethane backbone, resulting in the increase of thermal stability in ultimate copolymer.  相似文献   

6.
Polyurethane-polymethacrylic acid multiblock copolymers have been prepared from tetraphenylethane-based polyurethane macroiniferters. Aqueous dispersions of these block copolymers and their anionomers have been prepared. Anionomeric dispersions have smaller particle size and higher viscosity when compared to their corresponding block copolymeric dispersions. Particle size decreases whereas viscosity increases when the degree of neutralization is increased. Tensile strength and initial modulus are higher for films derived from anionomeric dispersions than for the corresponding block copolymeric films. Received: 13 March 1998 Accepted in revised form: 13 November 1998  相似文献   

7.
Aqueous polyurethane dispersions were prepared by the reaction of hydroxyl-terminated poly(ethylene adipate), ethylene glycol, dimethylol propionic acid and aromaic diisocyante, 4,4′-diphenylmethane diisocyanate. The influence of molecular weight of oligoester and molar ratio between isocyanate and hydroxyl groups (NCO/OH) in the prepolymerization step were investigated. Molecular weight, particle size and particle size distribution were measured and compared. It was verified that the molecular weight increases with increasing in NCO/OH molar ratio. The results suggest that the hard segment content plays an important role in particle size and particle size distribution of the dispersions.  相似文献   

8.
UV-curable polyurethane dispersions (UV–PUDs) have been reinforced with hydrophobic and hydrophilic modified silicas, respectively, and the effects have been studied with dispersion and dispersion cast films. It has been found that particle size increased and water swell decreased, tensile modulus, strength, and thermal stability increased with the addition and increasing amount of silica. These effects were more pronounced with the hydrophilic modified one than the hydrophobic modified one.  相似文献   

9.
A series of anionic water-borne polyurethane and polyurethane/polyacrylate dispersions and their paint films was prepared. It was found by using TEM that there were three phases in the polyurethane/polyacrylate film, i.e. the hard segment-rich phase and the soft segment-rich phase of polyurethane, and the polyacrylate phase. By increasing the content of urea groups, the glass transition temperature of the soft segments and the dissociation temperature of the long-distance ordering of the hard segments were raised. This should mean that the motion of macromolecular chains was hindered by increasing the content of urea groups, and the hydrophilic carboxyl groups embedded initially in macromolecular coils could thus not transfer easily to the particle surface, which resulted in a greater average particle size in the dispersion.  相似文献   

10.
 Results of colloid chemical characterisation and stability measurements on electrostatically stabilised latex dispersions made from emulsions of styrene and 4,4′-azobis-(4-cyanovaleric acid) are reported. The deviant stability of the hydrophobic polystyrene particles at low pH and low ionic strength is related to a proton “tunable” hydration layer surrounding weakly charged particles. The idea implies the formation of a polymer-supported surface phase that does not have any clear boundary, either towards the polymer moiety or in the direction of the bulk solution. The formation of the surface phase is controlled by Coulombic, hydrophobic and van der Waals interactions and by the contribution from the water structure at the hydrophobic and hydrophilic domain of the polymer particles. Negative charges on the hydrophobic surface badly interfere with the water structure at the hydrophobic moiety of the particle, whereas positive or uncharged surface groups do not damage the balance of free and clustered water molecules at the interface. Because the hydrophobic nature of the surface changes with the degree of dissociation of the surface charges, the degree of hydrophobicity of the carboxylic latices can be adjusted by changing the pH; therefore, it may be concluded that the hydrated and discharged carboxylic particle is apparently more hydrophobic relative to the ionised one. Thus, our concept can also explain differences in the hydrophobicity of colloidal polymer particles. Received: 12 June 1999/Accepted in revised form: 24 September 1999  相似文献   

11.
An isocyanate‐free strategy for the preparation of anionically stabilized water‐borne polyurea (PU) dispersions was developed with diamines, dicarbamates, and dianhydrides as monomers. Poly(amic acid urea)s (PAAUs) with number average molecular weights up to 34 kDa were synthesized from ethylenediaminetetraacetic dianhydride and diamine‐functional PUs. The latter were produced from polymerization of dicarbamates and diamines. The factors that affected the particle sizes of the corresponding PAAU dispersions were investigated. Water‐borne PAAU coatings cured at elevated temperatures exhibited much better material properties than those cured at 50 °C as a result of crosslinking due to amine/carboxylic acid reactions and noncyclic imidization. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1078–1090  相似文献   

12.
A novel waterborne hyperbranched polyurethane acrylate for aqueous dispersions (WHPUDs) based on hydroxy‐functionalized hyperbranched aliphatic polyester Boltorn? H20 was investigated. The effects of structural composition and crosslinking density have been studied in terms of swellability by water, thermal degradation, viscosity changes as well as transmission electron microscopy (TEM) morphology. The swell ratio showed an increasing trend with the higher concentration of ionic group, which is due to the increased total surface area of particles. The results of thermogravimetric analysis (TGA) for cured WHPUD films indicated good thermal stability with no appreciable weight loss until 200°C. The activation energies were evaluated and were found in the range 154–186 kJ mol?1. It was observed that an increase in hard segment content provoked the increases in thermal degradation temperature and activation energy of waterborne dispersions. The transmission electron photographs revealed that the average particle sizes of aqueous dispersions were in the range 30–125 nm. Owing to the enlargement of the stabilization site, the particle size decreased as the content of carboxyl group and degree of neutralization increased. The viscosity of WHPUDs increased rapidly with increasing the degree of neutralization. Moreover, water showed a favorable viscosity reduction effect. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

A series of lignin-based waterborne polyurethanes (ELWPUs) are prepared using epichlorohydrin-modified lignin (ELG) as the biobased component. The effect of ELG dosage on the performance of the dispersions was studied by particle sizing. The morphology, crystallinity, thermal behavior, water resistance and mechanical properties of the films were investigated as well. The results show that the particle size of ELWPU dispersions increased with the addition of ELG. Furthermore, the ELWPU exhibited noticeable thermal stability, desired mechanical properties and water resistance as the tensile strength of ELWPU film containing 0.25?wt% ELG increased to 40.6?MPa from 15.2?MPa and the water absorption rate decreased from 20.1 to 12.4% compared to the non-modified waterborne polyurethane. The ELG played an important role in improving the properties of the biomass-based materials.  相似文献   

14.
The influence of the hydration extent, AOT and silver ion concentration on average particle size and size distribution in micellar solution of silver nanoparticles obtained by biochemical synthesis was investigated. Formation and stability of nanoparticles were controlled by measurements of optical absorption spectra. Particle sizes were determined by transmission electron microscopy. Combinations of varied parameters have been found, making it possible to prepare three micellar solutions of spherical silver nanoparticles with a different average size in the range 4.6–10.5 nm and narrow size distribution (the standard deviation does not exceed 2.5 nm). For the water dispersions prepared from such solutions by the specially developed procedure, possible applications for studies of size effects in the biological action of nanoparticles are also discussed.  相似文献   

15.
Catastrophic phase inversion is induced by changing the phase ratio in a liquid-liquid dispersion and is widely used during the dispersion stage in the production of aqueous polyurethane ionomer (PUI) colloids. In the work reported here, water was added to polyurethane ionomer prepolymer (PUIp) until the water became the continuous phase. Three different dispersion regions have been discovered by changing the ionic group content. Stable emulsions containing small polymer drops were produced in Region I. Stable coarse emulsions containing a mixture of drop structures were produced in Region II, but only temporary dispersions could be produced in Region III. Conductivity measurements could not always be used to detect the phase inversion points effectively because the PUIp was swollen by water. Therefore, torque change measurements have been used in conjunction with the conductivity measurements to detect the phase inversion points for all three dispersion regions. Scanning electron microscopy (SEM) and optical microscopy were used to obtain images of these dispersions in the different regions. A catastrophic phase inversion map is used to represent the changes that occur in the PUIp-W dispersions. This map is plotted using the ionic group content as the ordinate and water content (at the phase inversion points) as the abscissa.  相似文献   

16.
The purpose of this research is to study the synthesis and characterization of stable aqueous dispersions of externally chain extended polyurethane/urea compositions terminated by hydrolyzable or hydrolyzed trialkoxysilane groups incorporated through secondary amino groups. These dispersions with excellent storage stability are substantially free from organic solvents which cure to water and solvent resistant, tough, scratch resistant, preferably light stable (non‐yellowing) silylated polyurethane (SPU) films. The films were characterized by FT‐IR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile strength and water contact angle measurements, nanoindentation, gel content, water and xylene swellability tests. The properties of the films were discussed and correlated in detail by changing length of soft segment, diisocyanates, NCO/OH ratio and chain extender, ethylenediamine (EDA). From the results, it was found that the particle size and viscosity are lower whereas the gel content and thermal stability are higher for SPUs. Modulus, hardness and tensile properties of SPU films are superior compared to EDA‐PU film. Higher water contact angle and residual weight percentage of SPU films confirm silylation of PU by [3‐(phenylamino)propyl]trimethoxysilane (PAPTMS). Increase in NCO/OH ratios consumes more quantity of PAPTMS which makes PU with superior mechanical properties. Higher PAPTMS content in SPU results in effective crosslinking of the functional silanol groups formed by hydrolysis reaction of trimethoxysilane groups. Overall, SPUs synthesized at 1.4 NCO/OH ratio using Poly‐(oxytetramethylene)glycol (PTMG)‐2000 and isophorone diisocyanate (or) toluene‐2,4‐diisocyanate have excellent properties compared to SPUs prepared using PTMG‐1000 and at 1.2 and 1.6 NCO/OH ratios. SPUs prepared at 1.6 NCO/OH ratio are brittle due to higher crosslinking density. In addition, the crosslinking density of the films can be modified through silane end‐group modification to produce SPUs with a wide range of physical properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Alkane nanocapsule is a kind of promising phase-change material. However, it is difficult to prepare alkane nanocapsule with an elastic shell by traditional method. Therefore, nonionic polyurethane with specially designed structure was synthesized. Octadecane nanocapsule prepared by this polyurethane not only had an elastic shell but also showed some good properties in other aspects. The polyurethane structure was characterized by infrared, hydrogen-1 nuclear magnetic resonance, and gel permeation chromatography. The conductivity of emulsification process was tracked. The average particle sizes of nanocapsules were measured by quasi-elastic light scattering and fell in the range of 240 to 485 nm. Octadecane nanocapsules showed a core–shell structure under transmission electron microscopy. The nanocapsule dispersions had a rather good stability under high-speed shearing and freezing–thawing tests. All of the coalescence ratios were less than 5 wt.% after testing. The fusion enthalpy of nanocapsules reached to 83 J g?1. It was found that the dried nanocapsule powder had rather good re-dispersion ability, and stable dispersions were obtained simply by agitating the powder into water. Coalescences of re-dispersed dispersions were all less than 1.8 wt.%, and their average particle sizes were in the range of 420 to 675 nm. There was almost no change in fusion enthalpy and melt temperature before and after re-dispersion, which indicated that the polyurethane shell had a good protection of octadecane from leaking out of the nanocapsule.  相似文献   

18.
Some new kinds of novel polyurethane (PU)/polyacrylate (PA) latex interpenetrating networks (LIPNs) were synthesized. Firstly PU dispersions were synthesized by self-emulsification polymerization. Then PU/PA LIPNs using PU dispersion as the seed were prepared by soap free emulsion polymerization. The effects of different PU/PA ratios, the blending method and the NCO/OH molar ratio of PU components on PU/PA LIPNs performance were also investigated. The structure and properties of PU/PA LIPNs such as mechanical properties, particle size, morphology of the surface were characterized by dynamic mechanical analysis, scanning electron microscopy, and dynamic light scattering. It was found that PU/PA LIPNs can markedly improve the water resistance and the mechanical properties of PU latex much more than those of PU/PA physical blends due to a great deal of interpenetrating and entangling between PU and PA latex. Moreover, the particle size of PU/PA LIPNs is related to the PA content and NCO/OH molar ratio of PU components: the higher the NCO/OH molar ratio in PU dispersions, the larger is the particle size of PU/PA LIPNs, and the average particle size of PU/PA LIPNs becomes larger with an increase in PA content.  相似文献   

19.
The formation and stability of liquid paraffin-in-water emulsions stabilized solely by positively charged plate-like layered double hydroxides (LDHs) particles were described here. The effects of adding salt into LDHs dispersions on particle zeta potential, particle contact angle, particle adsorption at the oil-water interface and the structure strength of dispersions were studied. It was found that the zeta potential of particles gradually decreased with the increase of salt concentration, but the variation of contact angle with salt concentration was very small. The adsorption of particles at the oil-water interface occurred due to the reduction of particle zeta potential. The structural strength of LDHs dispersions was strengthened with the increase of salt and particle concentrations. The effects of particle concentration, salt concentration and oil phase volume fraction on the formation, stability and type of emulsions were investigated and discussed in relation to the adsorption of particles at the oil-water interface and the structural strength of LDHs dispersions. Finally, the possible stabilization mechanisms of emulsions were put forward: the decrease of particle zeta potential leads to particle adsorption at the oil-water interface and the formation of a network of particles at the interface, both of which are crucial for emulsion formation and stability; the structural strength of LDHs dispersions is responsible for emulsion stability, but is not necessary for emulsion formation.  相似文献   

20.
Poly(benzimidazobenzophenanthroline) (BBL) was prepared according to literature method and modified with poly(ethylene oxide) in a one pot synthesis. After precipitation in aqueous sodium carbonate solution and subsequent purification, aqueous dispersions were prepared by ultrasonication. Particle sizes in the dispersions ranged from few tens of nanometers to several micrometers and most of the particles had sizes of 50–250 nm. Further studies indicated that the colloidal stability is a combined result of steric stabilization caused by excluded volume interactions of PEO chains on particle surface and electrostatic stabilization by the dissociated carboxylic acid groups on the particle surface. The product could be processed into uniform films 20–30 nm in thickness by spin coating onto gold-plated silicon substrates having aminethiol monolayer as the top most layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号