首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Tetrahedron: Asymmetry》2005,16(21):3469-3479
Several attempts have been made to transform the organometallic Re(VII) compound MTO and the (MoO2)2+ moiety to chiral epoxidation catalysts by addition of chiral organic ligands. Being very efficient epoxidation catalysts in achiral reactions, it was hoped that these compounds could be transformed into chiral epoxidation catalysts by adding chiral Lewis base ligands. The major flaw of most of these attempts, however, was the weak coordination of the chiral Lewis base ligands to the metal center, which led either to high ees only at the very beginning of the catalytic reaction (low conversion) or to generally low enantiomeric excesses. The heterogenisation of the Mo(VI) complexes was, at least in some cases, successfully achieved but with the same drawbacks with respect to the ees as in the homogeneous phase. Currently, attempts are being made to synthesize organometallic Re(VII) and Mo(VI) complexes with stronger interactions between the metal containing moiety and the chiral ligand(s).  相似文献   

2.
Xin-Yan Wang  Chuan Sun  Zhi-Guo Zhang 《Tetrahedron》2004,60(48):10993-10998
In the presence of 5.0 mol% chiral tungsten(VI) and molybdenum(VI) complexes, the catalytic asymmetric epoxidation of cis-1-propenylphosphonic acid (CPPA) with 30% aqueous H2O2 affording (1R,2S)-(−)-(1, 2)-epoxypropyl phosphonic acid (fosfomycin) was first described. The enantioselectivities of the tungsten and molybdenum catalysts depend strongly on the ligands, reaction temperature and solvent. In CH2Cl2 at 0 °C for 72 h, complex MoO2[(+)-campy]2 catalyzed the asymmetric epoxidation in a 100% conversion of CPPA with the highest 80% ee. The mechanism of the present epoxidation could be described as direct oxygen transfer occurred on the interface of the biphasic H2O-nonprotic system.  相似文献   

3.
Abstract. New cis‐dioxomolybdenum(VI) complexes (MoO2YxCH3OH) were synthesized using MoO2(acac)2 and 2[(1‐hydroxy‐2‐methylpropane‐2‐ylimino)methyl]phenol derivatives as tridentate ONO donor Schiff base ligands (H2Yx). MoY1 was crystallized in orthorhombic space group Pbca. The epoxidation of olefins using tert‐butyl hydroperoxide and oxidation of sulfides to the sulfoxides by hydrogen peroxide were efficiently enhanced by the catalytic activity of title MoVI complexes with excellent selectivity. The high efficiency and relative stability of the catalysts was observed by turnover number and UV/Vis investigations. The electron‐rich and bulky ligands promoted the effectiveness of the catalysts.  相似文献   

4.
Reaction of [MoO2(Acac)2] (Acac = acetylacetonate) with two similar hydrazone ligands in methanol yielded two mononuclear molybdenum(VI) oxocomplexes with general formula [MoO2(L)(CH3OH)], where L = L1 = (4-nitrophenoxy)acetic acid [1-(3-ethoxy-2-hydroxyphenyl)methylidene]hydrazide (H2L1) and L = L2 = (4-nitrophenoxy)acetic acid [1-(5-bromo-2-hydroxyphenyl)methylidene]hydrazide (H2L2). Crystal and molecular structures of the complexes were determined by single crystal X-ray diffraction method. All investigated compounds were further characterized by elemental analysis and FT-IR spectra. Single crystal X-ray structural studies indicate that the hydrazone ligands coordinate to the MoO2 cores through enolate oxygen, phenolate oxygen, and azomethine nitrogen. The Mo atoms in both complexes are in octahedral coordination.  相似文献   

5.
(NH3CH2CH2NH2)3[Mo(Ⅴ)O2(O2C6H4)2] (1), (NH3CH2CH2NH2)2.5[Mo(Ⅴ)o.sW(Ⅵ)o.502(O2C6H4)2] (2) and(NH3CH2CH2NH2)2[VC(Ⅵ)O2(O2C6H4)2] (3) were synthesized, structurally characterized by X-ray diffraction analysis, and studied on their interactions with ATP, their DNA cleavage activities and antitumor properties. The redox state of molybdenum was not changed on going from crystal to aqueous solutions in complexes 1 and 2, while tungsten underwent reduction from W(VI) to W(V) in complexes 2 and 3. ATP promoted the oxidation of both molybdenum and tungsten from M(Ⅴ) to M(Ⅵ) and the hydrolysis of catecholate ligands in solution consisting of ATP and the complexes. Complex 1 possesses fairly good activity to DNA cleavage and against tumor S180 in mice, and is more effective than the control drug cyclophosphamide under the identical conditions. However, complexes 2 and 3 exhibited marginal effectiveness. The effectiveness of anti-tumor of the complexes was related positively to their DNA cleavage activities and their hydrolysis of catecholate ligands.  相似文献   

6.
A reaction of [MoO2(acac)2] (where acac = acetylacetonate) with two hydrazone ligands in methanol yields two mononuclear molybdenum(VI) oxo complexes with the general formula [MoO2L(CH3OH)], where L = L1=(4-nitrophenoxy)acetic acid [1-(5-chloro-2-hydroxyphenyl)methylidene]hydrazide (H2L1) and L = L2=4-dimethylaminobenzoic acid [1-(2-hydroxy-3-methoxyphenyl)methylidene]hydrazide (H2L2). The crystal and molecular structures of the complexes are determined by the single crystal X-ray diffraction method. All of the investigated compounds are further characterized by the elemental analysis, FT-IR spectra, and thermogravimetric analysies. Single crystal X-ray structural studies indicate that hydrazone ligands coordinate to MoO2 cores through enolate oxygen, phenolate oxygen, and azomethine nitrogen atoms. The Mo atoms in both complexes are in octahedral coordination.  相似文献   

7.
An oxido-peroxido tungsten(VI) complex [WO(O2)L(CH3OH)] using salicylidene benzoyl hydrazine as a tridentate ONO donor Schiff base (H2L) has been synthesized and characterized by elemental analysis, IR, 1H NMR, molar conductance data, and single-crystal X-ray analysis. The complex was used as a catalyst for epoxidation of olefins and oxidation of sulfides. The results show that epoxides and sulfoxides were produced in high yield, turnover number, and selectivity.  相似文献   

8.
The chiral (ONS) dianionic Schiff base ligand benzoin thiosemicarbazone (H2L) reacts with MoO2(acac)2 to give the polymeric complex [(MoO2L) n ] (1) (Type 1). The reaction of MoO2L with pyridine (py), 3-picoline (3-pic) or 4-picoline (4-pic) gives [MoVIO2LD] (D = py, 3-pic or 4-pic) (Type 1). Further, the reaction of [MoO2L] or [MoO2LD] with PPh3 or reaction of [MoO2L] with PPh3 (plus bpy or phen, D) in the presence of donor reagents D gives [MoIVOL] or [MoIVOLD] (Type 2). On the other hand, the reaction of [MoO2L] with hydrazides (zdhH3) such as benzoylhydrazine (bhH3), isonicotinoylhydrazine (inhH3), nicotinoylhydrazine (nhH3), salicyloylhydrazine (slhH3) and thiosemicarbazide (tscH3) produced non-oxo–diazenido complexes [MoL(zdh)] (Type 3). The complexes have been characterized by elemental analyses, molar conductance, magnetic moment, electronic, i.r. and e.s.r. spectroscopic measurements.  相似文献   

9.
Two cis-bis-dioxomolybdenum oxalylsalicylidenedihydrazone complexes (MoO2L1 and MoO2L2) were synthesized via the complexation of dioxomolybdenum (VI) acetylacetonate with oxalylsalicylidenedihydrazone (H2L1) and p-sodium sulfonate oxalylsalicylidenedihydrazone (H2L2) bis-Schiff base chelating ligands, respectively. The structures of the newly synthesized complexes were confirmed by 1H- and 13C-NMR, IR, ultraviolet–visible and mass spectra, as well as elemental analyses (EA) and conductivity measurements. The spectrophotometric continuous variation method revealed the formation of 2: 1 (metal: ligand molar ratios). DFT studies were applied for the ligands and their Mo-chelates. Interestingly, the bis-MoO2(VI) oxalyldihydrazone complexes showed remarkable catalytic sufficiency towards the selective (ep)oxidation of 1,2-cyclooctene, benzyl alcohol and thiophene using H2O2 or tert-butyl hydroperoxide (tBuOOH) at 85 °C. Under aqueous conditions, the MoO2L2 (with p-sodium sulfonate substituent) exhibited superior that of the MoO2L1 (without p-NaSO3―group), highlighting the role of sodium sulfonate substituent in the catalytic progress of the Mo-chelate. The ligands (H2L1 and H2L2) and their corresponding Mo-complexes (MoO2L1 and MoO2L2) were assessed for their antitumor and antimicrobial activities. Furthermore, the antioxidant activity was also evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide dismutase (SOD) assays. The binding nature between the Mo-complexes and calf thymus DNA (ctDNA) was also studied within spectroscopic and hydrodynamic techniques.  相似文献   

10.
A new dioxo-molybdenum(VI) complex [MoO2(L)(CH3OH)] has been synthesized, using 2-[(2-hydroxypropylimino)methyl]phenol as tridentate ONO donor Schiff base ligand (H2L) and MoO2(acac)2. A monoclinic space group P21/c was determined by X-ray crystallography from single-crystal data of this complex. The high catalytic activity of this new Schiff base complex has been observed in the oxidation of various sulfides by urea hydrogen peroxide in ethanol affording sulfoxides and sulfones using different molar ratio of oxidant/sulfide in high/excellent yields and selectivity under mild and eco-friendly conditions. The relative high stability and desired turnover numbers have been observed for this Mo-catalyst in the oxidation reactions.  相似文献   

11.
Several cis-dioxomolybdenum complexes of two tridentate ONS chelating ligands H2L1 and H2L2 (obtained by condensation of S-benzyl and S-methyl dithiocarbazates with 2-hydroxyacetophenone) have been prepared and characterized. Complexes 1 and 2 are found to be of the form MoO2 (CH3OH) L1?·?CH3OH and MoO2L, respectively, (where L2–?=?dianion of H2L1 and H2L2). The sixth coordination site of the complexes acts as a binding site for various neutral monodentate Lewis bases, B, forming complexes 310 of the type MoO2LB (where B?=?γ-picoline, imidazole, thiophene, THF). The complexes were characterized by elemental analyses, various spectroscopic techniques, (UV-Vis, IR and 1H NMR), measurement of magnetic susceptibility at room temperature, molar conductivity in solution and by cyclic voltammetry. Two of the complexes MoO2(CH3OH) L1?·?CH3OH (1) and MoO2L1(imz) (5) were structurally characterized by single crystal X-ray diffraction. Oxo abstruction reactions of 1 and 5 led to formation of oxomolybdenum(IV) complex of the MoOL type.  相似文献   

12.
Novel chiral 2′-pyridinyl alcohols derived from isopropylidene-protected carbohydrates are reported. They show different characteristics at the hydroxy group, but are all suitable ligands for chiral molybdenum(VI) complexes of the type MoO2L2 (L = chiral 2′-pyridinyl alcoholate). MoO2(acac)2 served as starting material in the complex syntheses. The structure of one ligand and one dioxo complex were exemplary established by X-ray crystallography. For catalytic runs in the enantioselective epoxidation catalysis trans-methylstyrene was used as model substrate, tert-butylhydroperoxide and cumolhydroperoxide, resp., as the oxidant.  相似文献   

13.
Complexes of N,N′,N′′-tris(2-hydroxypropyl)-1,4,7-triazacyclononane (L), [CuL](ClO4)(NO3) (1), [CoL](ClO4)2 (2), [ZnL](ClO4)2 (3) and [MnL](ClO4)2 (4), have been synthesized and characterized on the basis of elemental analysis, electrospray ionization mass spectrometry, UV–Vis measurements and cyclic voltammetry. Crystal structures of the former three complexes, characterized by X-ray crystallography, show that these complexes are monoclinic with space group P21/n and P21/c. Each metal central in the complexes is six-coordinate with three N atoms of the macrocycle and three O atoms from the pendant hydroxypropyl arms, forming a distorted octahedral configuration. [MnL](ClO4)2 (4) is employed as catalyst in olefin epoxidation with H2O2. The final results indicate that complex (4) has good catalytic activity towards olefin epoxidation. Under mild conditions, the olefin conversion is moderate and epoxidation selectivity is 95–100%.  相似文献   

14.
The diamagnetic dioxomolybdenum(VI) complex [(MoO2)2(CH2L)(H2O)2]H2O (1) has been isolated in solid state from reaction of MoO2(acac)2 with bis(2-hydroxy-1-naphthaldehyde)malonoyldihydrazone (CH2LH4) in 3:1 molar ratio in ethanol at higher temperature. The reaction of the complex (1) with electron donor bases gives diamagnetic molybdenum(VI) complexes having composition [Mo2O5(CH2LH2)]·2A·2H2O (where A = pyridine (py, 2), 2-picoline (2-pic, 3), 3-picoline (3-pic, 4), 4-picoline (4-pic, 5)). Further, when the complex (1) is allowed to react with protonic bases such as isonicotinoylhydrazine (inhH3) and salicyloylhydrazine (slhH3), reduction of molybdenum(VI) centre occurs leading to isolation of homobimetallic molybdenum(V) complexes [Mo2(CH2L)(inh)2(H2O)2] (6) and [Mo2(CH2L)(slh)2] (7), respectively. The composition of the complexes has been established by analytical, thermo-analytical and molecular weight data. The structure of the molybdenum(VI) complexes (1)–(5) has been established by electronic, IR, 1H NMR and 13C NMR spectral studies while those of the complexes (6) and (7) by magnetic moment, electronic, IR and EPR spectral studies. The dihydrazone is coordinated to the metal centres in staggered configuration in complex (1) while in anti-cis configuration in complexes (2)–(7). The complexes (6) and (7) possess magnetic moment of 2.95 and 3.06 BM, respectively, indicating presence of two magnetic centre in the complexes per molecule each with one unpaired electron on each metal centre without any metal–metal interaction. The electronic spectra of the complexes are dominated by strong charge transfer bands. All of the complexes involve six coordinated molybdenum centre with octahedral arrangement of donor atoms except in the complex (6), in which the molybdenum centre has rhombic arrangement of ligand donor atoms. The probable mechanism for generation of oxo-group in the complexes (2)–(5) involving coordinated water molecule has been proposed.  相似文献   

15.
The reaction of a solution of MoO2(acac)2 in CH3OH and salicylidene 2-picoloyl hydrazone as a tridentate ONO donor Schiff base (ONO) afford a six-coordinated Mo(VI) complex [MoO2(ONO)(CH3OH)], with a distorted octahedral configuration. [MoO2(ONO)(CH3OH)] was isolated as an air-stable crystalline solid and fully characterized by single-crystal X-ray structure analysis. [MoO2(ONO)(CH3OH)] shows reactivity in the oxidation of sulfides to their corresponding sulfoxides using urea hydrogen peroxide as the oxidant at room temperature under air.  相似文献   

16.
The reactions of ethyldiphenylphosphine with a number of cis-dioxomolybdenum(VI) Schiff base coordination complexes are described. These molybdenum complexes incorporate tridentate Schiff base ligands obtained from the condensation of 5-X-salicylaldehyde (X = Cl, Br, H, CH3O) with o-aminobenzenethiol. Oxomolybdenum(IV) Schiff base complexes were observed as products of the reaction of these Mo(VI) complexes with PEtPh2. The kinetics for these reactions were followed spectrophotometrically and the applicable rate law is ? d[MoO2L]/dt = k1[MoO2L][PEtPh2]. The k1's were shown to vary systematically as the X-substituent on the ligand was changed. For MoO2(5-X-SSP), the specific rate constants at 30°C span the range from 19.6 × 10?4 M?1 sec?1 (X = Br) to 8.4 × 10?4 M?1 sec?1 (X = CH3O). It was also observed that a correlation exists between the cathodic reduction potentials (Epc) and the k1's within the series. The rate of reaction of MoO2(5-X-SSP) with PEtPh2 was altered and systematically controlled through ligand design.  相似文献   

17.
Summary New MoVI-dioxodialkyl complexes, MoO2R2(bipy), R = CH2CH2Ph and p-MeC6H4CH2; bipy = 2,2-bipyridine, have been synthesized. The i.r. and the 1H-n.m.r. spectra of these complexes are noted. The structure of MoO2(o-MeC6H4CH2)2(bipy) was determined by X-ray analysis. Significant differences in the redox characteristics of these dioxodialkylcompounds are reflected in the contrasting patterns: whereas reduction of MoO2-(CH2CH2Ph) 2(bipy) is a reversible one-electron process, under similar conditions MoO2(p-MeC6H4CH2)2(bipy) and MoO2(o-MeC6H4CH2)2(bipy) are reduced irreversibly. Similarly, solutions of MoO2(CH2CH2Ph)2(bipy) remain unchanged but oxygenated organic products are formed from MoO2(p-MeC6H4CH2)2(bipy) and MoO2 (o-MeC6H4CH2)2(bipy).  相似文献   

18.
The Reaction of Molybdenum with 2,3-Dihydroxynaphthalene   总被引:1,自引:0,他引:1  
[H2N(CH2)3NH312[MoO2(C10H6O2)2] (1) was synthesized by the 2,3-dihydroxynaphthalene in the mixed solvent of CH3OH, CH3CN reaction of (n-Bu4N)4[Mo8O26] with and 1,3-propanediarnine. (C5HllN2)2- [HeN(CH2)3NH2][MoO2(CloH6O2)2] (2) was obtained by the reaction of Na2MoO4.2H20 with 2,3-dihydroxynaphthalene in the same solvent above. Both of the complexes possess complex anion [Mo(VI)O2(OC10H6O)2]^2- which shows pseudo-octahedrally coordinated fashion, while the counterions are two protonated 1,3-propanediamine in complex 1 and (CsH11N2)^+ in complex 2. (C5H11N2)+ is the byproduct of reaction 2, which results from combination of acetonitrile with 1,3-propanediamine. Packing diagrams of the two complexes are also different. There is anti-parallel-aligned-double-meso-bilayer unit in complex 1. However there are four chiral anions arranged in anticlockwise orientation in complex 2.  相似文献   

19.
Two molybdenum (VI) hydrogen-bonded network polymers [MoO2F4]·(4,4′-H2bpd)(H2O)2 (1) and [MoO2Cl3(H2O)]·(4,4′-H2bpd)Cl (2) (bpd = bipiperidine) have been synthesized and examined as catalysts for epoxidation of cyclooctene. Complexes of the Mo compounds containing the bpd ligand are prepared and characterized by infrared spectroscopy, thermogravimetric and elemental analyses. They have been structurally characterized by single crystal X-ray diffraction analysis. The structures of both the complexes are shown to be comprised of molybdenum and two protonated N-ligand cations that have resulted in a cross-linked hydrogen-bonded network structure. These complexes are applicable as catalysts for the cis-cyclooctene epoxidation reactions with hydrogen peroxide as a source of oxygen and NaHCO3 as a cocatalyst. It has been observed that the formation of the oxidant peroxymonocarbonate ion, HCO4 by hydrogen peroxide and bicarbonate enhances the epoxidation reaction. Both the complexes have exhibited a good activity and a very high selectivity for the formation of cyclooctene oxide. An erratum to this article can be found at  相似文献   

20.
The reaction of bis(2-hydroxy-1-naphthaldehyde)succinoyldihydrazone with bis(acetylacetonato)dioxomolybdenum(VI) (MoO2(acac)2) in 1 : 3 molar ratio in EtOH : water mixture (95 : 5) affords a complex of composition [(MoO2)2(nsh)(H2O)2] · C2H5OH. The reaction of [(MoO2)2(nsh)(H2O)2] · C2H5OH with Lewis bases, namely pyridine, 2-picoline, 3-picoline, and 4-picoline, yields [(MoO2)2(nsh)(B)2] · C2H5OH (where B = pyridine, 2-picoline, 3-picoline, and 4-picoline). Further, when this complex was reacted with 1,10-phenanthroline and 2,2′-bipyridine in 1 : 3 molar ratio in anhydrous ethanol the binuclear complexes [(μ2-O)2(MoO2)2(H4nsh)(phen)] · C2H5OH and [(μ2-O)2(MoO2)2(H4nsh)(bpy)] · C2H5OH were obtained. All of the complexes have been characterized by analytical, magnetic moment, and molar conductivity data. The structures of the complexes have been discussed in the light of electronic, IR, 1H NMR, and 13C NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号