首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 773 毫秒
1.
A micellar liquid chromatographic method is described which was developed for the separation of the oxidation metabolites of 6-thiopurine formed in vitro by electrochemical and enzymatic activation. Electrochemical activation was carried out with an electrochemical cell on-line with the chromatograph. In the potential range 0.4–0.8 V vs. Pd, intermediate purine-6-sulfenic acid could be detected together with purine-6-sulfinic acid and 6-thiopurine disulfide. At potentials > 0.8 V, purine-6-sulfonic acid was detected and the oxidation of 6-thiopurine was completed. Intermediates and products formed in the horseradish peroxidase-catalyzed oxidation of 6-thiopurine were also studied. Enzymatic activation with horseradish peroxidase was similar to electrochemical oxidation at <0.8 V. Detection of sulfenic acid in the enzymatic oxidation supports earlier results which indicated that this metabolite may have biological significance. The results also provide some insight into the enzymatic oxidation pathway.  相似文献   

2.
Summary By high-performance liquid chromatography (HPLC) coupled with UV diode-array detection (DAD) and thermospray mass spectrometry (TSP-MS), four main constituents of a polar, whole plant extract fromDissotis rotundifolia T. were characterized. The fourC-glycosylflavones, isoorientin, orientin, vitexin and isovitexin were detected in the methanolic and hydroalcoholic extract of the plant as well as in the commercial drug preparation ‘Sirop de Dissotis’. Although the UV data and TSP mass spectra allowed rapid characterisation of all fourC-glycosylflavones, exact attribution of the peaks to their structures could not be achieved as neither the UV spectra nor the TSP mass spectra enabled differentiation of one position isomer from the other. Therefore a successful attempt was made to distinguish the 6-C from the 8-C-glycosylflavones by thermospray tandem mass spectrometry (TSP-MS-MS). The collision induced dissociation (CID) spectra of the particular ion [M+H-120]+ gave fragments which permitted differentiation of position isomers. To confirm the accuracy of on-line results, reference compounds were included in the HPLC study.  相似文献   

3.
Extractive electrospray ionization mass spectrometry (EESI-MS) for real-time monitoring of organic chemical reactions was demonstrated for a well-established pharmaceutical process reaction and a widely used acetylation reaction in the presence of a nucleophilic catalyst, 4-dimethylaminopyridine (4-DMAP). EESI-MS provides real-time information that allows us to determine the optimum time for terminating the reaction based on the relative intensities of the precursors and products. In addition, tandem mass spectrometric (MS/MS) analysis via EESI-MS permits on-line validation of proposed reaction intermediates. The simplicity and rapid response of EESI-MS make it a valuable technique for on-line characterization and full control of chemical and pharmaceutical reactions, resulting in maximized product yield and minimized environmental costs. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

4.
On-line formation and detection of glutathione and cysteine conjugates of acetaminophen were accomplished by the interfacing of a coulometric electrochemical cell with a thermospray mass spectrometer in a flow-injection experiment using a liquid chromatographic pump. Formation of the conjugates occurred only after acetaminophen was oxidized electrochemically by a two-electron transfer to N-acetyl-p-benzoquinoneimine and reacted in a mixing tee with either glutathione or cysteine. The newly formed conjugate was detected by thermospray mass spectrometry by observing the [M + H]+ ion for the acetaminophen-glutathione conjugate at m/z 457, or the [M + H]+ ion for the acetaminophen cysteine conjugate at m/z 271. Both the glutathione and cysteine conjugates produced a common fragment ion at m/z 184. The on-line reaction of glutathione and electrochemically generated N-acetyl-p-benzoquinoneimine was monitored at varying pH. At pH 8.5 the ion intensity for the acetaminophen-glutathione conjugate was greater than at lower pH, indicating that lower proton concentration enhanced the reaction of glutathione with N-acetyl-p-benzoquinoneimine. This on-line electrochemical-thermospray mass spectrometric method demonstrated that acetaminophen conjugates may be formed and detected in the time frame of 1 s.  相似文献   

5.
Ion/molecule reactions were explored in a newly developed miniature mass spectrometer fitted with a rectilinear ion trap (RIT) mass analyzer. The tandem mass spectrometry performance of this instrument is demonstrated using collision induced dissociation (CID) and ion/molecule reactions. The latter includes Eberlin transacetalization reactions and electrophilic additions. Selective detection of the chemical warfare simulant dimethyl methyl phosphonate (DMMP) was achieved through selective Eberlin reactions of its characteristic phosphonium fragment ion CH3OP(+)(O)CH3 (m/z 93), with 1,4-dioxane or 1,3-dioxolane. Efficient adduct formation as a result of electrophilic attack by the phosphonium ion on various nucleophilic reagents, including 1,1,3,3-tetramethyl urea, methanesulfonic acid methyl ester, dimethyl sulfoxide and methyl salicylate, was also observed using the RIT device. The product ions of these reactions were analyzed using CID and the characteristic fragmentation patterns of the ionic addition products were recorded using multiple-stage experiments in the miniature RIT instrument. This study clearly demonstrates that a small, home-built, miniature RIT mass spectrometer can be used to perform analytically useful ion/molecule reactions and also that instruments like this have the potential to provide a portable platform for in situ detection of organophosphorus esters and related compounds with high specificity using tandem mass spectrometry.  相似文献   

6.
This review summarizes publications on the on-line coupling of electrochemistry with mass spectrometry. After a brief historic introduction it is divided into three parts, organized in order of increasing complexity of the experimental arrangement. The first section deals with the use of the electrospray ion source as an electrochemical reactor for oxidation or reduction reactions. It is followed by the second part which covers the hyphenation of different kinds of electrochemical flow cell with a variety of ionization interfaces. The last section focuses on the on-line coupling of chromatographic techniques with electrochemical flow cells and mass spectrometry.  相似文献   

7.
Formation of polar conjugates is a well documented metabolic pathway for xenobiotics containing phenolic hydroxyl groups. This paper describes the analysis of two sulphate ester conjugates by fast atom bombardment mass spectrometry and thermospray liquid chromatography-mass spectrometry. Thermospray liquid chromatography-mass spectrometry proved the more successful technique for obtaining the molecular weight of the intact conjugate, but only by removal of the buffer from the high-performance liquid chromatography eluent.  相似文献   

8.
The application of electrospray ionisation mass spectrometry (ESI-MS) as a direct method for detecting reactive intermediates is a technique of developing importance in the routine monitoring of solution-phase reaction pathways. Here, we utilise a novel on-line photolysis ESI-MS approach to detect the photoproducts of riboflavin in aqueous solution under mildly alkaline conditions. Riboflavin is a constituent of many food products, so its breakdown processes are of wide interest. Our on-line photolysis setup allows for solution-phase photolysis to occur within a syringe using UVA LEDs, immediately prior to being introduced into the mass spectrometer via ESI. Gas-phase photofragmentation studies via laser-interfaced mass spectrometry of deprotonated riboflavin, [RF − H], the dominant solution-phase species under the conditions of our study, are presented alongside the solution-phase photolysis. The results obtained illustrate the extent to which gas-phase photolysis methods can inform our understanding of the corresponding solution-phase photochemistry. We determine that the solution-phase photofragmentation observed for [RF − H] closely mirrors the gas-phase photochemistry, with the dominant m/z 241 condensed-phase photoproduct also being observed in gas-phase photodissociation. Further gas-phase photoproducts are observed at m/z 255, 212, and 145. The value of exploring both the gas- and solution-phase photochemistry to characterise photochemical reactions is discussed.  相似文献   

9.
The extent to which electrochemistry on-line with electrospray mass spectrometry can be used to mimic cytochrome P450 catalyzed oxidations has been investigated. Comparisons on the mechanistic level have been made for most reactions in an effort to explain why certain reactions can, and some cannot, be mimicked by electrochemical oxidations. The EC/MS/MS system used successfully mimics in cases where the P450 catalyzed reactions are supposed to proceed via a mechanism initiated by a one-electron oxidation, such as N-dealkylation, S-oxidation, P-oxidation, alcohol oxidation and dehydrogenation. The P450 catalyzed reactions initiated via direct hydrogen atom abstraction, such as O-dealkylation and hydroxylation of unsubstituted aromatic rings, generally had a too high oxidation potential to be electrochemically oxidized below the oxidation potential limit of water, and were not mimicked by the EC/MS/MS system. Even though the EC/MS/MS system is not able to mimic all oxidations performed by cytochrome P450, valuable information can be obtained concerning the sensitivity of the substrate towards oxidation and in which position of the molecule oxidations are likely to take place. For small-scale electrochemical synthesis of metabolites, starting from the drug, the EC/MS/MS system should be very useful for quick optimization of the electrochemical conditions. The simplicity of the system, and the ease and speed with which it can be applied to a large number of compounds, make it a useful tool in drug metabolism research.  相似文献   

10.
An electrochemical flow cell coupled on-line to a mass spectrometer is used to oxidize a range of proteins. Oxidation of tyrosine and tryptophan can give rise to peptide bond cleavage at their C-terminal side. This suggests the possible use of electrochemistry as an alternative protein digestion method. For the small proteins insulin and alpha-lactalbumin (6 and 14 kD) almost all potential sites are cleaved, while for the largest successfully tested protein (carbonic anhydrase, 29 kD) 7 of the 15 available sites were specifically cleaved. Several proteins did not produce peptides upon electrochemical oxidation, possibly due to problems with accessibility of tyrosine and tryptophan residues, or to competing oxidation reactions. Peptides were generally not the major oxidation products: non-cleavage oxidation products observed as protein mass + n x 16 Da, presumably by oxidation of tyrosine, tryptophan, cysteine and methionine, account for the major fraction of protein oxidation products. Nevertheless the amount and variety of cleavage products at the present conditions shows good prospects for further improvement of the system. The efficient protein oxidation also allows the use of the EC-MS system as a tool to study protein oxidation reactions in general. The preconditioning and life history and/or age of the electrochemical cell was relevant to the solvent and sample conditions needed for efficient oxidative cleavage as opposed to other oxidation reactions.  相似文献   

11.
Catalytic reactions with oxygen are divided into two groups: electrophilic oxidation proceeding through activation of oxygen, and nucleophilic oxidation in which insertion of nucleophilic oxygen species into previously activated organic molecule occurs. The role of different types of lattice oxygen in the nucleophilic oxygen addition as well as catalyst properties determining the electrophilic pathway are discussed.  相似文献   

12.
The combination of a solid-phase extraction module, the AASP, on-line with thermospray high-performance liquid chromatography-mass spectrometry for the automated determination of drugs in plasma is described. The technique was evaluated successfully using, as an example, the determination of labetalol in human plasma. [2H7]Labetalol was used as an internal standard to compensate for changes in ionization efficiencies between analyses. The chromatographic and mass spectrometric conditions were optimized for labetalol. The combined technique was demonstrated as being robust and reliable for the analysis of plasma samples from a clinical study.  相似文献   

13.
On-line electrochemistry/liquid chromatography/mass spectrometry (EC/LC/MS) was employed to mimic the oxidative metabolism of the fungicide boscalid. High-resolution mass spectrometry and MS/MS experiments were used to identify its electrochemical oxidation products. Furthermore, the introduction of a second electrochemical cell with reductive conditions provided important additional information on the oxidation products. With this equipment, hydroxylation, dehydrogenation, formation of a covalent ammonia adduct, and dimerization were detected after initial one-electron oxidation of boscalid to a radical cation. On-line reaction with glutathione yielded different isomeric covalent glutathione adducts. The results of the electrochemical oxidation are in good accordance with previously reported in vivo experiments, showing that EC/LC/MS is a useful tool for studying biotransformation reactions of various groups of xenobiotics.  相似文献   

14.
This paper describes a straightforward and rapid on-line characterization using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS(n)) of the enzymatic degradation products of 2,2'-bis(2-oxazoline)-linked poly-epsilon-caprolactone (PCL-O). These new PCL-O polymers are expected to be used in a variety of pharmaceutical and biomedical applications since they are degraded enzymatically by surface erosion. PCL-O was polymerized in a three-step reaction and characterized by (1)H-NMR and size-exclusion chromatography (SEC). Solvent cast polymer films were exposed to enzymatic degradation in phosphate buffer (pH 7.5, 1% pancreatin). The enzymatic degradation of the polymer produced a wide variety of water-soluble oligomers which were separated and identified by HPLC/ESI-MS(n). Optimization of the gradient HPLC method resulted in effective separation of the oligomers. Furthermore, specific structures of the oligomers were clearly identified by tandem mass spectrometry. According to these results, ester bonds seem to be most sensitive to enzymatic degradation and, correspondingly, pancreatic lipase seems to be mainly responsible for the enzymatic erosion of the PCL-O films. This novel mass spectrometric method provides important knowledge about the enzymatic degradation process and structure of the polymer which is difficult to ascertain by other conventional methods.  相似文献   

15.
In the present work, a new liquid chromatography–mass spectrometry (LC–MS) system with on-line pretreatment using column switching and a dilution function was developed. This system can be used under conventional high-performance liquid chromatography (LC) separation conditions, including mobile phases containing phosphate buffer. The built-in autodilution function greatly improves the trapping efficiency for target compounds, followed by desaltation that optimizes the ionization conditions for MS analysis. This fully automated two-dimensional LC system interfaced with mass spectrometry provided a powerful tool for the determination of impurity profiles in pharmaceutical research and the identification of traditional Chinese medicine in natural products.  相似文献   

16.
A series of metabolites of 2,4,6-trinitrotoluene were studied by combined high-performance liquid chromatography-mass spectrometry. These metabolites are formed mainly by oxidation and reduction processes. Separations were done on a C8 reversed-phase column, using acetonitrile-water at various relative concentrations as mobile phases, followed by ultraviolet and on-line mass spectrometry with a direct liquid insertion probe liquid chromatograph-mass spectrometer interface. The mass spectra obtained were chemical-ionization spectra with the mobile phase as reagent. Mass spectra obtained included mainly reduced ions, adduct ions and typical fragment ions. The combination of high-performance liquid chromatographic separation with on-line mass spectrometry was found to be a suitable method for the identification of the investigated metabolites.  相似文献   

17.
The aim of these studies was to investigate the scope and limitations of electrochemistry on-line with mass spectrometry as a quick and convenient way to mimic phase I oxidative reactions in drug metabolism. A compound with previously reported in vitro and in vivo metabolism, the dopamine agonist 2-(N-propyl-N-2-thienylethylamino)-5-hydroxytetralin, was examined in an electrochemistry/mass spectrometry (EC/MS) system. The previously reported N-dealkylation was mimicked by the electrochemical cell while the oxidation of the phenol function was not fully mimicked by the EC/MS system, since the catechol and p-hydroquinone formed were immediately oxidized to the corresponding quinones. Since cytochrome P450 isoenzymes are the most important enzymes in phase I oxidative metabolism, two standard substrates used for the characterization of those enzymes, lidocaine and 7-ethoxycoumarin, were tested in the EC/MS system. The electrochemical cell was capable of mimicking the N-dealkylation of lidocaine but, under the conditions used in our experiments, the O-deethylation of 7-ethoxycoumarin could not be simulated in the electrochemical cell.  相似文献   

18.
Oxidation is commonly involved in the alteration of nucleic acids giving rise to diverse effects including mutation, cell death, malignancy, and aging. We demonstrate that electrochemistry represents an efficient and fast method to mimic oxidative modification of nucleic acids occurring in biological systems. Oxidation reactions were performed in a thin-layer cell employing a conductive diamond electrode as the working electrode and were monitored with electrospray ionization–mass spectrometry. Mass voltammograms were acquired for guanosine, adenosine, cytidine, and uridine. The observed oxidation potentials increased in the order guanosine<<adenosine<cytidine<uridine. Oxidation products of guanosine were characterized using high-resolution (tandem) mass spectrometry performed with a quadrupole–quadrupole time-of-flight instrument. On the basis of these experiments, it was concluded that the initial electrode reaction involves a one-electron, one-proton step to give a free radical. The primary oxidation product represents the starting point for a number of follow-up reactions, including guanosine dimerization as well as further oxidation to 8-hydroxyguanosine. Similar results were obtained for guanosine monophosphate and the corresponding dinucleotide. Furthermore, the guanosine radical was identified as an important intermediate for the formation of a covalent adduct with acetaminophen. This observation sheds new light on the mechanism of adduct formation as it demonstrates that oxidative activation of both the nucleobase and the adduct-forming agent is necessary to observe a detectable amount of adduct species.  相似文献   

19.
Alkaloid profiles in Stemona tuberosa were found to be highly variable. Six Stemona alkaloids isolated from the plant were subjected to on-line high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) and tandem mass spectrometry (MS/MS) analyses. Their fragmentation patterns and products were useful for their characterization. The LC/MS fingerprints of these alkaloids, though variable among samples, could provide an overall characterization of the authenticity and quality of this species and help to differentiate it from S. japonica and S. sessilifolia, as all three species are recognized as genuine sources of the herb Radix Stemonae in the Pharmacopoeia of the People's Republic of China.  相似文献   

20.
When zotepine, an antipsychotic drug, was electrochemically oxidized using electrospray ionization mass spectrometry (ESI-MS) coupled with a microflow electrolytic cell, [M + 16 + H]+ (m/z 348), [M-H]+ (m/z 330) and [M-14 + H]+ (m/z 318) were observed as electrochemical oxidation product ions (M represents the zotepine molecule). Although a major fragment ion that was derived from the dimethyl aminoethyl moiety was observed only at m/z 72 in the collision-induced dissociation (CID) spectrum of zotepine, new fragments such as m/z 315 and 286 ions could be generated in the CID spectrum by combining electrochemical oxidation and CID. Since these fragments were relatively specific with high ion strength, it was thought that they would be useful for developing a sensitive LC-MS/MS assay. The S-oxide and N-demethylated products were detected by electrolysis assuring that a portion of P450 metabolites of zotepine could be mimicked by the electrochemistry/electrospray ionization mass spectrometry (EC/ESI-MS) system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号