首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 近十年来,非加速器粒子物理实验的进展引人注目.实验设备规模宏大,建造费用猛增,实验运行周期变长.去年八月二日至八日在新加坡举行的第二十五届国际高能物理会议上,非加速器粒子物理实验及其有关理论的报告占相当大的比重,引起与会者的广泛兴趣.加速器产生的粒子束能量与亮度是可控的,粒子束种类、飞行方向和到达时间可由实验人员调节与控制.几十年来,这种粒子源实验手段在高能物理的飞速发展中起了巨大作用.但是,无论是粒子的能量还是粒子的种类,自然界存在的粒子源远比人工粒子源丰富多样.人们往往是在自然界找到了新粒子源,然后在加速器中产生它,并进行精密的测量.这样的例子是层出不穷的.例如,α、β与γ射线就是在天然放射源中找到的.正电子、μ介子和奇异粒子也是在宇宙线中首次发现的.  相似文献   

2.
 粒子物理学的发展始于1897年电子的发现,到1995年顶夸克的发现经历了100年.在这100年中,随着不断地发现新粒子和新现象,粒子物理学从孕育、诞生、成长到成熟,形成了一门崭新的物理学前沿学科.  相似文献   

3.
2003年1月1日至5月17日,北京谱仪进行ψ”实验取数,主要完成了:ψ”峰位上取数,束流能量Eb=1.8857GeV,累计积累33.7pb。1物理数据;ψ’,峰位精细扫描;共振峰外取数,束流能量Eb=1.8246GeV(数据用于e e^-湮灭为连续态强子过程的研究和ψ”、ψ’物理中的本底研究)。  相似文献   

4.
 以接近光速飞行的带电粒子群以及高能加速器,使我们对物质的结构、自然界基本力的作用、宇宙起源的认识,都有了长足的进步.在本世纪30年代,能产生百万电子伏特(MeV)能量的迴旋加速器,模拟了巨星核心的条件,提供了研究原子核反应的实验环境.后来出现的可产生十亿电子伏特(Gev)能量的同步加速器和直线加速器,揭示了中子量内部的环境,并证实了反物质的存在.今天,质子同步加速器的能量达万亿电子伏特(TeV),用于探测宇宙诞生时的十亿分之一秒内的环境.建造世界上最大的加速器--超导超级对撞机(SSC)的计划已经拟定.这个对撞机所使用的技术,在实际上已趋于它的极限.幸运的是,一种新的加速器技术--等离子体型的粒子加速器技术已经问世,它为达到更高能量开辟了一条充满希望的道路.  相似文献   

5.
6.
树华 《物理》2007,36(3):240-240
当2000年欧洲粒子研究所(CERN)的大型正负电子对撞机(LEP)被拆除时,该对撞机已经创造了将电子能量加速到100GeV以上的记录.但是这样高的能量并不容易达到.利用原来LEP的隧道新建的大型强子对撞机LHC的造价为10亿美元.  相似文献   

7.
 非加速器实验,顾名思义,包括所有不使用加速器手段进行的粒子物理实验。如果从1912年发现宇宙线算起,它的历史已相当长久,加速器出现以前,宇宙线实验有过一段辉煌时期,在30年代发现了正电子和μ子,在40年代发现了π介子和K介子,对粒子物理学的建立与发展作出了重大贡献。50年代出现加速器以后,使用高流强人工束流的加速器实验成为粒子物理实验研究的主流,有力地推动着粒子物理的迅速发展,而“靠天吃饭”、流强极低的宇宙线实验仅在加速器当时达不到的“超高”能区起补充作用。但应指出,70年代初著名的大型37Cl太阳中微子地下实验不仅获得重要物理发现,而且在实验方向与技术上作出了有意义的探索,堪称后来新一代非加速器实验的先驱。  相似文献   

8.
 当今正是粒子物理学发生根本性变革的时期。新近的实验证据要求一种全新的宇宙图像。一些新的发现近在咫尺,它们将以新的物质形态、新的自然力和新的时空维度来拓展人们的想像力。突破将来自下一代粒子加速器,即目前正在欧洲建造的大型强子对撞机(LHC),以及拟议中的国际直线对撞机(ILC)。在这些加速器上进行的实验将使你的宇宙观念发生根本性的变革。  相似文献   

9.
10.
树华 《物理》2006,35(11):978-978
在过去的一个世纪中,用于核物理与粒子物理研究的加速器所加速的粒子能量从几千电子伏(keV)、几百万电子伏(MeV)直增加到几十亿电子伏(GeV).让这样高能量的粒子轰击物质可以生成瞬间的小规模的早期宇宙.如今,在短时间内把粒子加速到更高能量的研究工作已经迈出了值得注意的一步.  相似文献   

11.
<正>2012年7月4日欧洲核子研究中心(CERN)宣布在大型强子对撞机LHC上发现希格斯粒子,科学家经过50多年的搜索,粒子物理学终于进入了希格斯时代。由于希格斯能量为较低的125 Ge V,因此,除了可以使用直线正负电子对撞机(例如ILC和CLIC)外,还可以采用环形电子正负对撞机产生希格斯粒子,并且后者具有更高的亮度及更多的对撞点,除了在功耗方面外,在技术难度及成本方面也  相似文献   

12.
 高能物理与低温物理本是两个独立的研究领域,在各自的能量区域里并没有重叠.然而低温制冷和低温超导技术在高能物理和高能加速器中,显示了相当高的应用价值.  相似文献   

13.
14.
1974年11月,丁肇中和里克特几乎同时宣布,他们的实验组各自在美国布鲁克海文实验室的质子同步加速器AGS和斯坦福直线加速器中心的正负电子对撞机SPEAR上,发现了一个能量约为31亿电子伏特的新粒子,并分别命名为J粒子和Ψ粒子,后来统一称为J/Ψ粒子。这一被誉为“十一月革命”的发现,使高能物理的研究迈进了一个新的境界。  相似文献   

15.
 量子论和相对论的发现和确立是20世纪基础科学的最伟大的事件,它们是现代科学技术的基础,改变了整个人类的生活方式。例如,人们制造了原子弹、氢弹,建造了核电站;随着集成电路的迅速发展,计算机已经普及到家庭,人们坐在家里就可通过网络了解全世界发生的事。20世纪后期,在总结新的实验事实的基础上,理论上创立了粒子物理的标准模型,所有核物理和粒子物理的实验结果都和标准模型的预言相一致。在人们为标准模型而欢呼的时候,实验上测量到存在中微子振荡现象,说明中微子有质量,这就超出了标准模型,说明标准模型需要完善和发展。  相似文献   

16.
 1989年9月7日上午,美国参、众两院举行会议,表决通过了建造美国历史上最大的加速器--超导超级对撞机(Superconducting Super Collider,即SSC)的决定.这台加速器,是周长87公里的质子-质子对撞机,质心系能量40TeV(1TeV=1012电子伏),建造在德克萨斯州达拉斯市南郊农场地下50米左右,耗资60亿美元,由美国能源部领导,SSC实验室(命名为罗纳德·里根高能物理实验室,实验室主任为R·Schwitters)负责,在1998年建成.  相似文献   

17.
何景棠 《物理学进展》2003,23(4):466-472
本文描述寻找顶夸克的漫长过程。从70年代末开始,美国的PEP,德国的PETRA,80年代日本的TRISTAN,欧洲核子中心CERN的SP PS质子反质子对撞机,90年代的CERN的LEP大型电子正电子对撞机,最后于1997年才由美国费米国家实验室的D0和CDF国际合作组找到了顶夸克存在的证据,并给出了顶夸克的质量为:174.3±3.2±4.0GeV。人们可以从这段历史获得有益的启示。  相似文献   

18.
要认识肉眼看不到的粒子,我们首先想到的办法是什么?是显微镜,电子显微镜或是原子力显微镜。没错,要看清肉眼看不到的粒子,就得靠显微镜。但是,要认识它们的性质,就得修建庞大的仪器,粒子加速器就是这样一种大型仪器。世界上最大的粒子加速器名叫大型强子对撞机(LHC),重5万吨、长27千米、造价高达25亿美元,将于2008年春天投入使用。图1欧洲核子研究中心示意图为何要建粒子加速器在瑞士和法国交界处有一个举世瞩目的研究机构,它就是欧洲核子研究中心,其主要研究目标是搞清楚究竟是什么东西构成了世界上的物质。而大型强子对撞机就位于这个…  相似文献   

19.
 高能物理实验需要耗资惊人的粒子加速器.例如在美国得克萨斯正在建立中的53英里长的超导超级对撞机,需耗资80亿美元才能建成.但是依利诺阿贡国家实验室的物理学家们已经成功地试验了一种新技术,能显著地减少大型加速器的尺寸与成本.  相似文献   

20.
张闯 《物理》2008,37(05):289-297
人类对于微观世界的探索是粒子加速器发展的驱动力.粒子加速器从20世纪30年代问世以来,不断向更高能量和更好性能挺进.随着研究的深入,粒子加速器一步步从低能发展到高能,从弱聚焦发展到强聚焦,从打静止靶发展到粒子束对撞.更高的能量和更高的亮度是用于高能物理研究的加速器发展的两大前沿.作为多学科研究的平台,同步辐射光源、自由电子激光和散裂中子源等基于加速器的大科学装置也在蓬勃发展.各种低能加速器广泛地应用于国民经济的各个领域.新方法、新技术、新原理层出不穷.文章将讨论国际粒子加速器的前沿.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号