首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligo(ethylene oxide)-functionalized trialkoxysilanes can be used as novel electrolytes for high-voltage cathode, such as LiCoO2 (4.35 V) and Li1.2Ni0.2Mn0.6O2 (4.6 V); however, they are not well compatible with graphite anode. In this study, a synergistic solid electrolyte interphase (SEI) film-forming effect between [3-[2-(2-methoxyethoxy)ethoxy]propyl]-trimethoxysilane (TMSM2) and propylene carbonate (PC) on graphite electrode was investigated. Excellent SEI film-forming capability and cycling performance was observed in graphite/Li cells using the electrolyte of 1 M LiPF6 in the binary solvent of TMSM2 and PC, with the PC content in the range of 10–30 vol.%. Meanwhile, the graphite/Li cells delivered higher specific capacity and better capacity retention in the electrolyte of 1 M LiPF6 in TMSM2 and PC (TMSM2:PC = 9:1, by vol.), compared with those in the electrolyte of 1 M LiPF6 in TMSM2 and EC (TMSM2:EC = 9:1, by vol.). The synergistic SEI film-forming properties of TMSM2 and PC on the surface of graphite anode was characterized by electrolyte solution structure analysis through Raman spectroscopy and surface analysis detected by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR) analysis.  相似文献   

2.
Composite CuO/Cu2O/Cu anode for lithium ion battery was designed and synthesized via facile electrodeposition and the subsequent in situ thermal oxidation in air at 300 °C for 1 h. The as-prepared composite CuO/Cu2O/Cu anode was studied in terms of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), galvanostatic charge/discharge, cyclic voltammetry (CV), and AC impedance. As expected, the composite CuO/Cu2O/Cu with CuO-rich surface displayed hierarchical cypress-like morphology; furthermore, the hierarchical cypress-like CuO/Cu2O/Cu anode also delivered satisfactory electrochemical performances. For example, the reversible discharge capacity remained at 534.1 mAh/g even after 100 cycles. The enhanced electrochemical performances were attributed to the hierarchical cypress-like porous structure and the synergistic effect among the composite active copper oxides and highly conductive Cu current collector.  相似文献   

3.
Electrochemical performance of natural vein graphite as an anode material for the rechargeable Li-ion battery (LIB) was investigated in this study. Natural graphite exhibits many favorable characteristics such as, high reversible capacity, appropriate potential profile, and comparatively low cost, to be an anode material for the LIB. Among the natural graphite varieties, the vein graphite typically possesses very high crystallinity together with extensively high natural purity, which in turn reduces the cost for purification. The developed natural vein graphite variety used for this study, possessed extra high purity with modified surface characteristics. Half-cell testing was carried out using CR 2032 coin cells with natural vein graphite as the active material and 1 M LiPF6 (EC: DMC; vol. 1:1) as the electrolyte. Galvanostatic charge–discharge, cyclic voltammetry, and impedance analysis revealed a high and stable reversible capacity of 378 mA h g?1, which is higher than the theoretical capacity (372 mA h g?1 for LiC6). Further, the observed low irreversible capacity acquiesces to the high columbic efficiency of over 99.9%. Therefore, this highly crystalline developed natural vein graphite can be presented as a readily usable low-cost anode material for Li-ion rechargeable batteries.  相似文献   

4.
A thin-film lithium phosphorous oxynitride (LiPON) layer on the top of a graphite anode is synthesized via radio frequency magnetron sputtering, whereas the thickness of the film is about 0.3 ~ 1.3 μm. The field emission scanning electron microscopy on the samples confirms the even-coated layer on the anode, while the thickness of layer is reconfirmed by weighing the area density of sputtered anode. The storage experiment at elevated temperature of LiNi0.8Co0.15Al0.05O2/graphite cells with and without a LiPON layer on anode reveals that the LiPON layer on the anode would restrain the capacity loss when compared with bare anode. Moreover, it is found that a thicker LiPON layer on anode would provide better capacity retention during storage aging. Meanwhile, the electrochemical impedance spectroscopy is recorded during aging and its equivalent circuit simulation is proposed. Also, the anode surface morphology with and without a LiPON layer is observed before and after aging. Based on these investigations and analysis, we conclude that the LiPON layer on the top of the anode would act as a protective layer and improve the capacity retention during storage aging at elevated temperature.  相似文献   

5.
The silicon/graphite/carbon (SGC) composite was successfully prepared by ball-milling combined with pyrolysis technology using nanosilicon, graphite, and phenolic resin as raw materials. The structure and morphology of the as-prepared materials are characterized by X–ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). Meanwhile, the electrochemical performance is tested by constant current charge–discharge technique, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) measurements. The electrodes exhibit not only high initial specific capacity at a current density of 100 mA g?1, but also good capacity retention in the following 50 cycles. The EIS results indicate that the electrodes show low charge transfer impedance Rsf?+?Rct. The results promote the as-prepared SGC material as a promising anode for commercial use.  相似文献   

6.
We describe in this paper the synthesis and the characterization of Li4Ti5O12-reduced graphene oxide (LTO-RGO) composite and demonstrate their use as hybrid supercapacitor, which is consist of an LTO negative electrode and activate carbon (AC) positive electrode. The LTO-RGO composites were synthesized using a simple, one-step process, in which lithium sources and titanium sources were dissolved in a graphene oxide (GO) suspension and then thermal treated in N2. The lithium-ion battery with LTO-RGO composite anode electrode revealed higher discharge capacity (167 mAh g?1 at 0.2 C) and better capacity retention (67%) than the one with pure LTO. Meanwhile, compared with the AC//LTO supercapacitor, the AC//LTO-RGO hybrid supercapacitor exhibits higher energy density and power density. Results show that the LTO-RGO composite is a very promising anode material for hybrid supercapacitor.  相似文献   

7.
Pure LiMn2O4 samples with high crystallinity (LMO-1# and LMO-2#) were successfully synthesized by a facile hydrothermal method using δ-MnO2 nanoflowers and α-MnO2 nanowires as the precursors. The as-prepared samples were analyzed by XRD, SEM, and Brunauer-Emmett-Teller (BET), and their capacitive properties were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge test. Two LiMn2O4 samples showed good capacitive behavior in aqueous hybrid supercapacitors. AC//LMO-1# and AC//LMO-2# delivered the initial specific capacitance of 45.4 and 40.7 F g?1 in 1 M Li2SO4 electrolyte at a current density of 200 mA g?1 in the potential range of 0~1.5 V, respectively. After 1000 cycles, the capacitance retention was 97.6% for AC//LMO-1# and 93.7% for AC//LMO-2#. Obviously, LMO-1# from δ-MnO2 nanoflowers exhibited higher specific capacitance and better cycling performance than LMO-2#, so LMO-1# was more suitable as the positive electrode material in hybrid supercapacitors.  相似文献   

8.
A series of Cr-substituted LiMn2O4 samples (LiCr x Mn2-x O4, 0?≤?x?≤?0.3) were synthesized by a urea-assisted combustion method to enhance pseudocapacitive properties of LiMn2O4 material in aqueous electrolyte. Their structure and morphology were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The LiCr x Mn2-x O4 and activated carbon (AC) electrode were used as the cathode and anode in hybrid supercapacitors, respectively, which capacitive properties were determined by cyclic voltammetry (CV), galvanostatic charge/discharge test, and electrochemical impedance spectroscopy (EIS) in Li2SO4 solution. The results revealed that the partial substitution of Mn3+ by Cr3+ decreased initial capacity, but it prevented capacity fading. In the working voltage of 0–1.4 V, the AC/LiCr0.1Mn1.9O4 capacitor delivered an initial specific capacitance of 41.6 F g?1 (based on the total active mass of two electrodes) at a current density of 100 mA g?1 in 1 M Li2SO4 solution. After 1,000 cycles, its capacity loss was only 1.7 %.  相似文献   

9.
The impacts of boron-based Li salt additives including lithium tetrafluoroborate (LiBF4) and lithium difluoro(oxalate)borate (LDFOB) on the storage life of Li-ion battery at elevated temperature are investigated. Adding 1 wt% additives in the electrolyte significantly affects the storage life of the LiNi0.8Co0.15Al0.05O2/graphite full cell at 55 °C. The anode solid electrolyte interphase (SEI), preventing the loss of Li+ and e? in anode, is the key factor affecting the storage life. The formation and aging of SEI on the graphite anode with and without additives are investigated. It is found that the SEI formed with the addition of LiBF4 is thick and loose due to LiF crystals produced by the decomposition of LiBF4 and the SEI cannot prevent the Li+ and e? loss in anode and the decomposition of the electrolyte solvent, resulting in shorter storage life of the battery. On the contrary, the SEI formed with the addition of LDFOB is thick and compact due to formation of the lithium oxalate in the SEI, produced by the decomposition of LDFOB. The SEI efficiently inhibits decomposition of the electrolyte solvent on anode and makes a longer storage life of the battery.  相似文献   

10.
The anode material Si/CNTs@C composite is prepared by a spray–drying combined pyrolysis technology. The as–prepared material is characterized by XRD, SEM, TEM, and electrochemical measurements. The composite is composed of nano–Si, CNTs, flake graphite, and amorphous glucose–pyrolyzed carbon, and CNTs provides a good wrapping effect to buffer the volume change of silicon. The composite as anode for LIB shows good electrochemical performance. In the voltage range of 2.00–0.01 V, it delivers initial charge capacity of 630.5 at 100 mA g?1, and 85.14 % of initial capacity is retained even after 50 cycles. The CV and AC impedance analysis indicate that the prepared composite separately shows good electrode stability and low charge- transfer impedance R ct. The results indicate that the Si/CNTs@C composite is a potential alternative to graphite for high energy–density lithium–ion batteries.
Graphical abstract The anode material Si/CNTs@C composite is prepared by a spray–drying combined pyrolysis technology.
  相似文献   

11.
A simple and rapid process for the synthesis of Cu2SnS3 (CTS) nanoparticles by microwave heating of metal–organic precursor solution is described. X-ray diffraction and Raman spectroscopy confirm the formation of tetragonal CTS. X-ray photoelectron spectroscopy indicates the presence of Cu, Sn, S in +1, +4, ?2 oxidation states, respectively. Transmission electron microscopy divulges the formation of crystalline tetragonal CTS nanoparticles with sizes ranging 2–25 nm. Diffuse reflectance spectroscopy in the 300–2,400 nm wavelength range suggests a band gap of 1.1 eV. Pellets of CTS nanoparticles show p-type conduction and the carrier transport in temperature range of 250–425 K is thermally activated with activation energy of 0.16 eV. Thin film solar cell (TFSC) with architecture: graphite/Cu2SnS3/ZnO/ITO/SLG is fabricated by drop-casting dispersion of CTS nanoparticles which delivered a power conversion efficiency of 0.135 % with open circuit voltage, short circuit current and fill factor of 220 mV, 1.54 mA cm?2, 0.40, respectively.  相似文献   

12.
A novel graphene (G)-Co/CoO shaddock peel-derived carbon foam (SPDCF) hybrid was fabricated as anode materials for lithium-ion batteries. The preparation of G-Co/CoO SPDCF was according to the following two steps. Firstly, the dried shaddock peels were immersed into the mixture of Co(NO3)2/graphene oxide for about 12 h. Then, the shaddock peels were taken out and heated at 800 °C for 2 h under N2 atmosphere. The strategy is simple, low-cost, and environmentally friendly because the shaddock peel is abundant and renewable. The obtained G-Co/CoO SPDCF hybrid were carefully characterized by SEM, EDS, XPS, XRD, TGA, BET, TEM, and electrochemical techniques. The results showed that the carbonized shaddock peels had hierarchical porous nanoflakes structures and graphene was uniformly dispersed into the SPDCF. The nanosized Co/CoO was formed on the G-SPDCF. The resulted G-Co/CoO SPDCF hybrid could maintain a high capacity of 600 mA h g?1 at 0.2 A g?1 after 80 cycles, which was much higher than that of commercial graphite (372 mA h g?1). The enhanced performance might be ascribed to the existence of lots of uniform Co/CoO and the hierarchical G-SPDCF alleviating the mechanical stress during the process of lithiation/delithiation.  相似文献   

13.
Vinyl ethylene carbonate (VEC) is investigated as an electrolyte additive to improve the electrochemical performance of LiNi0.4Mn0.4Co0.2O2/graphite lithium-ion battery at higher voltage operation (3.0–4.5 V) than the conventional voltage (3.0–4.25 V). In the voltage range of 3.0–4.5 V, it is shown that the performances of the cells with VEC-containing electrolyte are greatly improved than the cells without additive. With 2.0 wt.% VEC addition in the electrolyte, the capacity retention of the cell is increased from 62.5 to 74.5 % after 300 cycles. The effects of VEC on the cell performance are investigated by cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS), x-ray powder diffraction (XRD), energy dispersive x-ray spectrometry (EDS), scanning electron microscopy (SEM), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The results show that the films electrochemically formed on both anode and cathode, derived from the in situ decomposition of VEC at the initial charge–discharge cycles, are the main reasons for the improved cell performance.  相似文献   

14.
Jinxue Guo  Fenfen Li  Jing Sui  Haifeng Zhu  Xiao Zhang 《Ionics》2014,20(11):1635-1639
Three-dimensional Co3O4-graphene frameworks (3D-CGFs) are prepared with a one-pot hydrothermal method. Co3O4 particles are in situ anchored on graphene sheets, and the resulting composite self-assembles into 3D architecture during the hydrothermal treatment. Scanning electron microscope, transmission electron microscope, powder X-ray powder diffraction, and Raman spectroscopy are employed to characterize the sample. When tested as anode materials for lithium-ion batteries, 3D-CGFs demonstrate remarkable electrochemical lithium storage properties, such as large and stable reversible capacity (>530 mAh g?1 at 500 mA g?1 over 300 cycles), good capacity retention (88 % retention after 300 cycles at 500 mA g?1 compared with the 4th cycle), excellent high-rate performance (515 mAh g?1 at 1 A g?1), making it a promising candidate for high-performance anode materials, especially for high-rate lithium-ion batteries.  相似文献   

15.
《Solid State Ionics》2004,166(1-2):191-197
Cathodic and anodic overpotentials were measured using current interruption and AC impedance spectroscopy for two separate solid oxide fuel cells (SOFCs). The fuel cells used yttria-stabilized zirconia (YSZ) as the electrolyte, strontium-doped lanthanum manganite (LSM) as the cathode, and a porous YSZ layer impregnated with copper and ceria as the anode. The Cu/CeO2/YSZ anode is active for the direct conversion of hydrocarbon fuels. Overpotentials measured using both current interruption and impedance spectroscopy for the fuel cell operating at 700 °C on both hydrogen and n-butane fuels are reported. In addition to providing the first electrode overpotential measurements for direct conversion fuel cells with Cu-based anodes, the results demonstrate that there may be significant uncertainties in measurements of electrode overpotentials for systems where there is a large difference between the characteristic frequencies of the anode and cathode processes and/or complex electrode kinetics.  相似文献   

16.
Lithium pyrophosphate compound Li2CuP2O7 has been synthesized through solid state reaction method. FTIR and XRD results, realized at room temperature, indicate respectively the dominant feature of pyrophosphate anion (P2O7)4? and a pure monoclinic phase with I2/a space group. Electrical and dielectric properties have been studied using impedance spectroscopy complex over a wide temperature (576–710 K) and frequency (209 Hz–1 MHz) range. From the direct and alternative conductivities (DC and AC), electrical conduction is found to be thermally activated process. The frequency-dependent AC conductivity obeys Jonscher’s universal power law σAC~Aωs. The differential scanning calorimetry spectrum discloses phase transition at 622 K.  相似文献   

17.
In the present study, α-NaCuPO4 compound was prepared by solid-state reaction method and characterized by X-ray powder diffraction and infrared spectroscopy. The AC electrical conductivity and dielectric relaxation properties of this compound have been investigated by means of impedance spectroscopy measurements over a wide range of frequencies and temperatures 209 Hz–1 MHz and 598–708 K, respectively. Both impedance and modulus analysis exhibit the grain and grain boundary contribution in the electrical response of the sample. It was found that the data of the AC measurements follow the overlapping large polaron tunneling model and the model’s parameters were determined.  相似文献   

18.
Ethylene sulfate (DTD) is investigated as a novel film formation electrolyte additive for graphite anode material in lithium-ion battery. The CV results reveal that DTD is reduced prior to ethylene carbonate (EC) at the interface between graphite and electrolyte, while it cannot prevent the sustained reduction of propylene carbonate (PC) when the amount of DTD is lesser than 3 wt% in the PC-based electrolyte. XPS analyses demonstrate that the reduction products of DTD, Li2SO3, and ROSO2Li are formed at the surface of graphite in the EC-based electrolyte, which is beneficial to lower the interfacial resistance as suggested by the EIS results. In addition, SEM images show a smoother and homogeneous surface film at the surface of graphite when DTD is incorporated into the electrolyte. Consequently, the Li/graphite half cells cycled in EC-based electrolyte containing DTD exhibit higher specific capacity and improved cycling capability than that without DTD.  相似文献   

19.
A new copolymer, poly(methyl methacrylate-co-butyl acrylate) (P(MMA-co-BA)), was synthesized by emulsion polymerization with different mass ratio of methyl methacrylate (MMA) and butyl acrylate (BA). The membranes were prepared by phase inversion and corresponding gel polymer electrolytes (GPEs) were obtained by immersing the membrane into a liquid electrolyte. In this design, the hard monomer MMA provided the copolymer with good electrolyte uptake, while the soft monomer BA provided the GPE with strong adhesion between the anode and cathode of lithium ion battery. The properties of the resulting product were investigated by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectra, scanning electron spectroscopy, linear sweep voltammetry, thermogravimetric analysis, cyclic voltammetry, electrochemical impedance spectroscopy and charge/discharge test. The results show that the obtained GPE based on P(MMA-co-BA) with the mass ratios of MMA and BA = 6:1 exhibits good conductivity (as high as 1.2 × 10?3 S cm?1) at room temperature and high electrochemical stability (up to 4.9 V vs. Li/Li+). With the application of the polyethylene (PE)-supported GPE in Li/Li(Li0.13Ni0.30Mn0.57)O2 battery, the battery presents good cyclic stability (maintaining 95.4 % of its initial discharge capacity after 50 cycles) at room temperature.  相似文献   

20.
Jie Liu  Chenqiang Du  Zhiyuan Tang 《Ionics》2014,20(10):1495-1500
The titanate spinel Li2NiTi3O8 is proposed for the first time as a new anode for lithium-ion batteries and successfully synthesized via a facile ball-milling assisted solid-state reaction method. The sample is characterized by X-ray diffraction patterns (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), galvanostatic charge–discharge tests, cyclic voltammetry (CV) tests, and electrochemical impedance spectroscopy (EIS). The results reveal that the Li2NiTi3O8 nanoparticles have well-distributed morphology, and the particle size ranges between 100 and 300 nm. Although the initial coulombic efficiency is only 56.3 %, the Li2NiTi3O8 electrode still exhibits a high rate capability and excellent cycling stability. The Li2NiTi3O8 anode provides a large capacity of 212.3 mAh g?1 at 0.1 A g?1 after 10 cycle, which is close to its theoretical capacity (223.6 mAh g?1). Even after 100 cycles, it still delivers a quite high capacity of 203.98 mAh g?1, with no significant capacity fading. This indicates that the as-synthesized Li2NiTi3O8 material is a promising anode material for lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号