共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we present a stability analysis of a stochastic optimization problem with stochastic second order dominance constraints. We consider a perturbation of the underlying probability measure in the space of regular measures equipped with pseudometric discrepancy distance (Römisch in Stochastic Programming. Elsevier, Amsterdam, pp 483–554, 2003). By exploiting a result on error bounds in semi-infinite programming due to Gugat (Math Program Ser B 88:255–275, 2000), we show under the Slater constraint qualification that the optimal value function is Lipschitz continuous and the optimal solution set mapping is upper semicontinuous with respect to the perturbation of the probability measure. In particular, we consider the case when the probability measure is approximated by an empirical probability measure and show an exponential rate of convergence of the sequence of optimal solutions obtained from solving the approximation problem. The analysis is extended to the stationary points. 相似文献
2.
In this paper we study optimization problems with second-order stochastic dominance constraints. This class of problems allows for the modeling of optimization problems where a risk-averse decision maker wants to ensure that the solution produced by the model dominates certain benchmarks. Here we deal with the case of multi-variate stochastic dominance under general distributions and nonlinear functions. We introduce the concept of ${\mathcal{C}}$ -dominance, which generalizes some notions of multi-variate dominance found in the literature. We apply the Sample Average Approximation (SAA) method to this problem, which results in a semi-infinite program, and study asymptotic convergence of optimal values and optimal solutions, as well as the rate of convergence of the feasibility set of the resulting semi-infinite program as the sample size goes to infinity. We develop a finitely convergent method to find an ${\epsilon}$ -optimal solution of the SAA problem. An important aspect of our contribution is the construction of practical statistical lower and upper bounds for the true optimal objective value. We also show that the bounds are asymptotically tight as the sample size goes to infinity. 相似文献
3.
Inspired by a recent work by Alexander et al. (J Bank Finance 30:583–605, 2006) which proposes a smoothing method to deal
with nonsmoothness in a conditional value-at-risk problem, we consider a smoothing scheme for a general class of nonsmooth
stochastic problems. Assuming that a smoothed problem is solved by a sample average approximation method, we investigate the
convergence of stationary points of the smoothed sample average approximation problem as sample size increases and show that
w.p.1 accumulation points of the stationary points of the approximation problem are weak stationary points of their counterparts
of the true problem. Moreover, under some metric regularity conditions, we obtain an error bound on approximate stationary
points. The convergence result is applied to a conditional value-at-risk problem and an inventory control problem.
相似文献
4.
Numerical methods for stochastic programs with second order dominance constraints with applications to portfolio optimization 总被引:1,自引:0,他引:1
Inspired by the successful applications of the stochastic optimization with second order stochastic dominance (SSD) model in portfolio optimization, we study new numerical methods for a general SSD model where the underlying functions are not necessarily linear. Specifically, we penalize the SSD constraints to the objective under Slater’s constraint qualification and then apply the well known stochastic approximation (SA) method and the level function method to solve the penalized problem. Both methods are iterative: the former requires to calculate an approximate subgradient of the objective function of the penalized problem at each iterate while the latter requires to calculate a subgradient. Under some moderate conditions, we show that w.p.1 the sequence of approximated solutions generated by the SA method converges to an optimal solution of the true problem. As for the level function method, the convergence is deterministic and in some cases we are able to estimate the number of iterations for a given precision. Both methods are applied to portfolio optimization problem where the return functions are not necessarily linear and some numerical test results are reported. 相似文献
5.
Meng and Xu (2006) [3] proposed a sample average approximation (SAA) method for solving a class of stochastic mathematical programs with complementarity constraints (SMPCCs). After showing that under some moderate conditions, a sequence of weak stationary points of SAA problems converge to a weak stationary point of the original SMPCC with probability approaching one at exponential rate as the sample size tends to infinity, the authors proposed an open question, that is, whether similar results can be obtained under some relatively weaker conditions. In this paper, we try to answer the open question. Based on the reformulation of stationary condition of MPCCs and new stability results on generalized equations, we present a similar convergence theory without any information of second order derivative and strict complementarity conditions. Moreover, we carry out convergence analysis of the regularized SAA method proposed by Meng and Xu (2006) [3] where the convergence results have not been considered. 相似文献
6.
《Optimization》2012,61(3):395-418
In this article, we discuss the sample average approximation (SAA) method applied to a class of stochastic mathematical programs with variational (equilibrium) constraints. To this end, we briefly investigate the structure of both–the lower level equilibrium solution and objective integrand. We show almost sure convergence of optimal values, optimal solutions (both local and global) and generalized Karush–Kuhn–Tucker points of the SAA program to their true counterparts. We also study uniform exponential convergence of the sample average approximations, and as a consequence derive estimates of the sample size required to solve the true problem with a given accuracy. Finally, we present some preliminary numerical test results. 相似文献
7.
Computational Management Science - We propose asset and liability management models in which the risk of underfunding is modelled based on the concept of stochastic dominance. Investment decisions... 相似文献
8.
Wei Wang 《Operations Research Letters》2008,36(5):515-519
We propose a sample average approximation (SAA) method for stochastic programming problems with expected value constraints. Such problems arise, for example, in portfolio selection with constraints on conditional value-at-risk (CVaR). We provide a convergence analysis and a statistical validation scheme for the proposed method. 相似文献
9.
In this paper, we consider the sample average approximation (SAA) approach for a class of stochastic nonlinear complementarity problems (SNCPs) and study the corresponding convergence properties. We first investigate the convergence of the SAA counterparts of two-stage SNCPs when the first-stage problem is continuously differentiable and the second-stage problem is locally Lipschitz continuous. After that, we extend the convergence results to a class of multistage SNCPs whose decision variable of each stage is influenced only by the decision variables of adjacent stages. Finally, some preliminary numerical tests are presented to illustrate the convergence results.
相似文献10.
Linear stochastic programming problems with first order stochastic dominance (FSD) constraints are non-convex. For their mixed 0-1 linear programming formulation we present two convex relaxations based on second order stochastic dominance (SSD). We develop necessary and sufficient conditions for FSD, used to obtain a disjunctive programming formulation and to strengthen one of the SSD-based relaxations. 相似文献
11.
Edgar Elias Osuna 《Statistics & probability letters》2012,82(4):758-764
We state formal definitions for crossing points in pairs of distributions and give a detailed proof of a theorem that relates those points to the second order stochastic dominance (SSD). The theorem states that the fulfillment of the area balance conditions for SSD at the t values that correspond to crossing points, and at the limit t→∞, is a necessary and sufficient condition for its fulfillment at all t: {−∞<t<∞}, as required for the existence of SSD. We provide examples for the application of the theorem in the case of continuous distributions, including a continuous counter example to prove that the Mean-Variance criterion is not sufficient to state preferences under risk aversion. 相似文献
12.
In this paper, we develop a stochastic programming model for economic dispatch of a power system with operational reliability and risk control constraints. By defining a severity-index function, we propose to use conditional value-at-risk (CVaR) for measuring the reliability and risk control of the system. The economic dispatch is subsequently formulated as a stochastic program with CVaR constraint. To solve the stochastic optimization model, we propose a penalized sample average approximation (SAA) scheme which incorporates specific features of smoothing technique and level function method. Under some moderate conditions, we demonstrate that with probability approaching to 1 at an exponential rate with the increase of sample size, the optimal solution of the smoothing SAA problem converges to its true counterpart. Numerical tests have been carried out for a standard IEEE-30 DC power system. 相似文献
13.
Stochastic dominance relations are well studied in statistics, decision theory and economics. Recently, there has been significant
interest in introducing dominance relations into stochastic optimization problems as constraints. In the discrete case, stochastic
optimization models involving second order stochastic dominance constraints can be solved by linear programming. However,
problems involving first order stochastic dominance constraints are potentially hard due to the non-convexity of the associated
feasible regions. In this paper we consider a mixed 0–1 linear programming formulation of a discrete first order constrained
optimization model and present a relaxation based on second order constraints. We derive some valid inequalities and restrictions
by employing the probabilistic structure of the problem. We also generate cuts that are valid inequalities for the disjunctive
relaxations arising from the underlying combinatorial structure of the problem by applying the lift-and-project procedure.
We describe three heuristic algorithms to construct feasible solutions, based on conditional second order constraints, variable
fixing, and conditional value at risk. Finally, we present numerical results for several instances of a real world portfolio
optimization problem.
This research was supported by the NSF awards DMS-0603728 and DMI-0354678. 相似文献
14.
Johannes O. Royset 《Computational Optimization and Applications》2013,55(2):265-309
We consider smooth stochastic programs and develop a discrete-time optimal-control problem for adaptively selecting sample sizes in a class of algorithms based on variable sample average approximations (VSAA). The control problem aims to minimize the expected computational cost to obtain a near-optimal solution of a stochastic program and is solved approximately using dynamic programming. The optimal-control problem depends on unknown parameters such as rate of convergence, computational cost per iteration, and sampling error. Hence, we implement the approach within a receding-horizon framework where parameters are estimated and the optimal-control problem is solved repeatedly during the calculations of a VSAA algorithm. The resulting sample-size selection policy consistently produces near-optimal solutions in short computing times as compared to other plausible policies in several numerical examples. 相似文献
15.
《Operations Research Letters》2021,49(5):676-681
In this paper we discuss sample complexity of solving stationary stochastic programs by the Sample Average Approximation (SAA) method. We investigate this in the framework of Optimal Control (in discrete time) setting. In particular we derive a Central Limit Theorem type asymptotics for the optimal values of the SAA problems. The main conclusion is that the sample size, required to attain a given relative error of the SAA solution, is not sensitive to the discount factor, even if the discount factor is very close to one. We consider the risk neutral and risk averse settings. The presented numerical experiments confirm the theoretical analysis. 相似文献
16.
We consider stochastic optimization problems where risk-aversion is expressed by a stochastic ordering constraint. The constraint requires that a random vector depending on our decisions stochastically dominates a given benchmark random vector. We identify a suitable multivariate stochastic order and describe its generator in terms of von Neumann–Morgenstern utility functions. We develop necessary and sufficient conditions of optimality and duality relations for optimization problems with this constraint. Assuming convexity we show that the Lagrange multipliers corresponding to dominance constraints are elements of the generator of this order, thus refining and generalizing earlier results for optimization under univariate stochastic dominance constraints. Furthermore, we obtain necessary conditions of optimality for non-convex problems under additional smoothness assumptions. 相似文献
17.
Dimitri Drapkin 《Discrete Applied Mathematics》2010,158(4):291-297
We derive a cutting plane decomposition method for stochastic programs with first-order dominance constraints induced by linear recourse models with continuous variables in the second stage. 相似文献
18.
In the last decade, a few models of portfolio construction have been proposed which apply second order stochastic dominance (SSD) as a choice criterion. SSD approach requires the use of a reference distribution which acts as a benchmark. The return distribution of the computed portfolio dominates the benchmark by the SSD criterion. The benchmark distribution naturally plays an important role since different benchmarks lead to very different portfolio solutions. In this paper we describe a novel concept of reshaping the benchmark distribution with a view to obtaining portfolio solutions which have enhanced return distributions. The return distribution of the constructed portfolio is considered enhanced if the left tail is improved, the downside risk is reduced and the standard deviation remains within a specified range. We extend this approach from long only to long-short strategies which are used by many hedge fund and quant fund practitioners. We present computational results which illustrate (1) how this approach leads to superior portfolio performance (2) how significantly better performance is achieved for portfolios that include shorting of assets. 相似文献
19.
Michal Červinka 《Optimization》2016,65(5):1049-1060
We consider parameter-dependent mathematical programs with constraints governed by the generalized non-linear complementarity problem and with additional non-equilibrial constraints. We study a local behaviour of stationarity maps that assign the respective C- or M-stationarity points of the problem to the parameter. Using generalized differential calculus rules, we provide criteria for the isolated calmness and the Aubin properties of stationarity maps considered. To this end, we derive and apply formulas of some particular objects of the third-order variational analysis. 相似文献
20.
Generalized stationary points of the mathematical program with equilibrium constraints (MPEC) are studied to better describe the limit points produced by interior point methods for MPEC. A primal-dual interior-point method is then proposed, which solves a sequence of relaxed barrier problems derived from MPEC. Global convergence results are deduced under fairly general conditions other than strict complementarity or the linear independence constraint qualification for MPEC (MPEC-LICQ). It is shown that every limit point of the generated sequence is a strong stationary point of MPEC if the penalty parameter of the merit function is bounded. Otherwise, a point with certain stationarity can be obtained. Preliminary numerical results are reported, which include a case analyzed by Leyffer for which the penalty interior-point algorithm failed to find a stationary point.Mathematics Subject Classification (1991):90C30, 90C33, 90C55, 49M37, 65K10 相似文献