首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
We describe here an aptasensor for the ultrasensitive detection of Staphylococcus aureus by electrochemical impedance spectroscopy (EIS). Single-stranded DNA was linked to a nanocomposite prepared from reduced graphene oxide (rGO) and gold nanoparticles (AuNP). Thiolated ssDNA was covalently linked to the AuNPs linked to rGO, and probe DNA was immobilized on the surface of an AuNP-modified glassy carbon electrode to capture and concentrate Staph. aureus. The probe DNA of the aptasensor selectively captures the target bacteria in its three-dimensional space, and these results in a dramatic increase in impedance. Scanning electron microscopy, cyclic voltammetry and EIS were used to monitor the single steps of the electrode assembly process. The effect was utilized to quantify the bacteria in the concentration range from 10 to 106 cfu mL?1 and with a detection limit of 10 cfu mL?1 (S/N?=?3). The relative standard deviation of Staphylococcus aureus detection was equal to 4.3 % (105 cfu mL?1, n?=?7). In addition to its sensitivity, the biosensor exhibits high selectivity over other pathogens.
Figure
Schematic representation of the GCE surface modification and the detection of S. aureus. Reduced graphene oxide and gold nanoparticle (AuNP) nanocomposite linked by single-stranded DNA was prepared and then used in an aptasensor for the ultrasensitive detection of Staphylococcus aureus through electrochemical impedance spectroscopy. The probe DNA of the aptasensor selectively captures the target bacteria in its three-dimensional space, and these results in a dramatic increase in impedance.  相似文献   

2.
A competitive microplate fluoroimmunoassay was developed for the determination of human serum albumin in urine. It is based on the use of biotinylated CdTe quantum dots (QDs) whose synthesis is optimised in terms of storage stability, purification, and signal-to-noise ratio. The bioconjugated QDs were characterised by gel chromatography and gel electrophoresis. Storage stability and quantum yield were investigated. The excitation/emission wavelengths are 360/620?nm. The immunoassay of human serum albumin in urine has a working range from 1.7 to 10?μg.mL?1, and the limit of detection is 1.0?μg.mL?1.
Figure
Preparation of biotinylated quantum dots is described. Their structure consists of biotinylated denatured bovine serum albumin attached to the quantum dot surface. Fluoroimmunoassay for human serum albumin was developed utilizing thus prepared bioconjugate.  相似文献   

3.
We report on an aptamer with high affinity against Salmonella typhimurium (S. typhimurium) and selected from an enriched oligonucleotide pool by a whole-cell SELEX process in a method for the fluorimetric determination of S. typhimurium using a graphene oxide platform. In the absence of target, the fluorescence was fairly weak as result of the FAM-labeled aptamer adjacent to graphene oxide. If, however, the fluorophore is released from the graphene oxide due to the formation of the target/aptamer complexes, fluorescence intensity is substantially increased. Under the optimum conditions, the assay displays a linear response to bacteria in the concentration range from 1?×?103 to 1?×?108 CFU·mL?1, with a detection limit of 100 CFU·mL?1. The method is selective in that fluorescence is not much enhanced in case of other bacteria. This aptasensor displays higher sensitivity and selectivity than others and is believed to possess a large potential with respect to the rapid detection of bacteria.
Figure
A useful fluorescence aptasensor based on a graphene oxide platform was constructed for Salmonella typhimurium detection, which has a great potential application in rapid detection of pathogen as it has high sensitivity and selectivity.  相似文献   

4.
We have developed a sensitive assay for enteropathogenic E. coli (EPEC) by integrating DNA extraction, specific polymerase chain reaction (PCR) and DNA detection using an electrode modified with the bundle-forming pilus (bfpA) structural gene. The PCR amplified products are captured on the electrode and hybridized with biotinylated detection probes to form a sandwich hybrid containing two biotinylated detection probes. The sandwich hybridization structure significantly combined the numerous streptavidin alkaline phosphatase on the electrode by biotin-streptavidin connectors. Electrochemical readout is based on dual signal amplification by both the sandwich hybridization structure and the enzyme. The electrode can satisfactorily discriminate complementary and mismatched oligonucleotides. Under optimal conditions, synthetic target DNA can be detected in the 1 pM to 10 nM concentration range, with a detection limit of 0.3 pM. EPEC can be quantified in the 10 to 107 CFU mL?1 levels within 3.5 h. The method also is believed to present a powerful platform for the screening of pathogenic microorganisms in clinical diagnostics, food safety and environmental monitoring.
An electrochemical DNA sensor was first designed to detect a bfpA gene specifically related to the EPEC.  相似文献   

5.
We introduce a rapid and sensitive approach to study the interactions of an affinity probe with the bacterial wall. Immunoglobulin was immobilized on platinum nanoparticles, and the resulting probe nanoparticles bind to bacterial walls as confirmed by transmission electron microscopy. A MALDI-MS assay was developed that can detect ~105 cfu mL?1 of S. marcescens and E. coli. This approach enables simple, rapid and straightforward detection of bacterial proteins, with high resolution and sensitivity, and without the requirement for tedious washing/separation steps.
Figure
Antobody IgG treated Pt NPs are successfully implemented to bind the cell surfaces of target bacteria. The current bio-analytical technique allows simple, rapid and straightforward identification of bacteria. The obtained results proved that IgG modified platinum nanoparticle strategy was also capable to enhance the protein peaks with high signal intensity and resolution.  相似文献   

6.
We have developed a highly sensitive electrochemical immunoassay for the quantitation of zearalenone (ZEN), a mycotoxin produced by Fusarium species. In this enzyme linked immunosorbent assay, the enzymatic conversion of the substrate p-nitrophenylphosphate is detected by a microplate reader and the signal subsequently converted into an electrical signal. The concentrations of coating antigen (ZEN-ovalbumin), of monoclonal antibody, and of goat anti-mouse antibody labeled with alkaline phosphatase were optimized. In terms of electrochemical detection, the types and pH values of the buffers, the conditions for agitating, and scanning frequency were optimized. The effective detection range of this immunoassay is quite wide (0.004 to 9.5 ng?mL?1), and the limit of detection is 2 pg?mL?1. ZEN-free corn, wheat, and grain-based food samples were spiked with ZEN and analyzed by this method, and recoveries were found to range from 91.6 % to 113.0 %. Unlike previously described electrochemical methods, this method is both highly sensitive and has a wide working range. The method is fast and thus provides a platform for high-throughput analysis that meets the current need to monitor trace levels of analytes in grain and grain-based food.
Figure
Scheme of test procedure of electrochemical immunosensor (procedure of immune-reaction: from a to f)  相似文献   

7.
We present an electrochemical aptasensor for rapid and ultrasensitive determination of the additive bisphenol A (BPA) and for screening drinking water for the presence of BPA. A specific aptamer against BPA and its complementary DNA probe were immobilized on the surface of a gold electrode via self-assembly and hybridization, respectively. The detection of BPA is mainly based on the competitive recognition of BPA by the immobilized aptamer on the surface of the electrode. The electrochemical aptasensor enables BPA to be detected in drinking water with a limit of detection as low as 0.284 pg?mL?1 in less than 30 min. This extraordinary sensitivity makes the method a most powerful tool for on-site monitoring of water quality and food safety.
Figure
A novel electrochemical aptasensor was developed for rapid and ultrasensitive detection of bisphenol A (BPA) and screening of BPA in drinking water using the specific aptamer against BPA.  相似文献   

8.
We have developed a rapid and sensitive method for immunomagnetic separation (IMS) of Salmonella along with their real time detection via PCR. Silica-coated magnetic nanoparticles were functionalized with carboxy groups to which anti-Salmonella antibody raised against heat-inactivated whole cells of Salmonella were covalently attached. The immuno-captured target cells were detected in beverages like milk and lemon juice by multiplex PCR and real time PCR with a detection limit of 104 cfu.mL?1 and 103 cfu.mL?1, respectively. We demonstrate that IMS can be used for selective concentration of target bacteria from beverages for subsequent use in PCR detection. PCR also enables differentiation of Salmonella typhi and Salmonella paratyphi A using a set of four specific primers. In addition, IMS—PCR can be used as a screening tool in the food and beverage industry for the detection of Salmonella within 3–4 h which compares favorably to the time of several days that is needed in case of conventional detection based on culture and biochemical methods.
The method uses silica coated magnetic nanoparticles immobilized with anti-Salmonella antibody for immunomagnetic separation of Salmonella from beverages followed by detection by multiplex PCR (mPCR) and real time PCR (qPCR). This methodology contributes to rapid screening and accurate detection of Salmonella contaminations in beverages.  相似文献   

9.
We describe a new method for differential-pulse anodic stripping voltammetric determination of thallium(I) using a carbon paste electrode modified with dicyclohexyl-18-crown-6. The effect of supporting electrolyte (type and pH), accumulation and reduction potential, and of time and amount of modifier were investigated by differential pulse anodic stripping voltammetry. A method was then worked out for the determination of thallium at low levels. Under optimized conditions, the response to Tl(I) is linear in the range from 3.0 to 250 ng mL?1. The detection limit is 0.86 ng mL?1. The sensor displays good repeatability (with a relative standard deviation of ±2.70 % for n?=?7) and was applied to the determination of Tl(I) in water, hair samples, and certified reference materials.
Figure
Crown ethers allow only some ions to entry and complex formation that their sizes equal to ether cavity.  相似文献   

10.
Yaping Li 《Mikrochimica acta》2012,177(3-4):443-447
We report on a new scheme for the determination of the activity of caspase-3 using a specific peptide labeled with N-(4-aminobutyl)-N-ethylisoluminol (ABEI) as a chemiluminescent (CL) probe and on the development of magnetic separation technology. Firstly, the ABEI-labeled and biotinylated peptide was prepared and conjugated to streptavidin-coated magnetic beads (MBs) to form f-MBs (functionalized magnetic beads). The f-MBs contain a site (DEVD, Asp-Glu-Val-Asp) that is cleaved by caspase-3. Upon cleavage, the terminal residue attached to ABEI can dissociate from the f-MBs and can be used for CL detection. CL intensity is linearly related to the concentration of caspase-3 in the range 1.0 to 600 ng mL?1, with a detection limit of 0.3 ng mL?1. The relative standard deviation of the assay is 3.6 % at a level of 50 ng mL?1 of caspase-3 (for n?=?11). The CL assay has been applied to the determination of caspase-3 in Jurkat cell extract with recoveries between 96.6 % and 106.1 % (n?=?5).
Figure
A chemiluminescence assay for the detection of caspase-3 activity using N-(4-aminobutyl)-N-ethylisoluminol labeled specific peptide as CL probe coupling the magnetic separation technology was developed. The developed method has been applied to determination of caspase-3 in Jurkat cells extract with a satisfactory.  相似文献   

11.
This work reported an efficient electrochemical treatment for drinking water disinfection using a pyrolytic graphite electrode modified with ferrocenyl tethered poly(amidoamine) dendrimers–multiwalled carbon nanotubes–chitosan nanocomposite. The influence parameters of electrochemical disinfection of Escherichia coli and Staphylococcus aureus, such as applied potential and sterilization time, were investigated. Further investigation indicated that almost all (99.99 %) of the initial bacteria were killed after applying a low potential of 0.4 V for 10 min. During the electrochemical disinfection process, the oxidized form of ferrocene was formed on electrode, which played a key role in the disinfection towards E. coli and S. aureus. Hence, the proposed method may provide potential application for the disinfection of drinking water.
Figure
Schematic diagram of electrochemical disinfection progress  相似文献   

12.
We report on an electrochemical method for the determination of the activity of the enzyme methyltransferase (MTase). The methyl-binding domain-1 protein was applied to recognize symmetrically methylated cytosine in CpG (-C-phosphate-G-) islands of ds-DNA which then specifically bind to anti-His tag antibody. Hyperbranched rolling circle amplification (RCA) was used to improve sensitivity. When the dsDNA was treated with M.Sss I methyltransferase, the sequence 5′-CCGG-3′ was methylated and recognized by the methyl binding protein. In turn, the anti-His tag, biotinylated IgG, streptavidin and biotinylated oligonucleotide were captured successively on the surface of an electrode. Subsequently, the RCA reaction was initiated and streptavidin-labeled alkaline phosphatase immobilized on the surface of the electrode. ALP was able to catalyze the hydrolysis of 1-naphthyl phosphate to form 1-naphthol at pH 9.8. The oxidation peak current of 1-naphthol was used to monitor the methylation process. The response obtained by differential pulse voltammetry was linearly related to the concentration of M.Sss I MTase in the range from 0.1 to 40 unit mL?1, and the detection limit was 0.03 unit mL?1 (at an SNR of 3). The inhibitory action of paclitaxel on the activity of M.Sss I MTase also was investigated.
Figure
An electrochemical immunosensing method is described for the detection of DNA methylation, assaying DNA methyltransferase activity by combining the rolling circle amplification technique.  相似文献   

13.
We report on a combination of magnetic solid-phase extraction and spectrophotometric determination of bromate. Cetyltrimethylammonium ion was adsorbed on the surface of phenyl-functionalized silica-coated Fe3O4 nanoparticles (Ph-SiO2@Fe3O4), and these materials served as the sorbent. The effects of surfactant and amount of sorbent, the composition of the desorption solution, the extraction time and temperature were optimized. Under optimized conditions, an enrichment factor of 12 was achieved, and the relative standard deviation is 2.9 % (for n?=?5). The calibration plot covers the 1–50 ng mL?1 range with reasonable linearity (r 2?>?0.998); and the limit of detection is 0.5 ng mL?1. The method is not interfered by ionic compounds commonly found in environmental water samples. It was successfully applied to the determination of bromate in spiked water samples.
Figure
Extraction of bromate ions using surfactant-coated phenyl functionalized Fe3O4 magnetic nanoparticles followed by spectrophotometric detection.  相似文献   

14.
We report on the use of hollow fiber liquid-liquid-liquid microextraction (HF-LLLME) followed by corona discharge ion mobility spectrometry for the determination of dextromethorphan and pseudoephedrine in urine and plasma samples. The effects of pH of the donor phase, stirring rate, ionic strength and extraction time on HF-LLLME were optimized. Under the optimized conditions, the linear range of the calibration curves for dextromethorphan in plasma and urine, respectively, are from 1.5 to 150 and from 1 to 100 ng mL?1. The ranges for pseudoephedrine, in turn, are from 30 to 300 and from 20 to 200 ng mL?1. Correlation coefficients are better than 0.9903. The limits of detection are 0.6 and 0.3 ng mL?1 for dextromethorphan, and 8.6 and 4.2 ng mL?1 for pseudoephedrine in plasma and urine samples, respectively. The relative standard deviations range from 6 to 8%.
Figure
Hollow fiber liquid–liquid–liquid microextraction (HF-LLLME) followed by corona discharge ion mobility spectrometry (CD-IMS) was used for the determination of dextromethorphan and pseudoephedrine in urine and plasma samples.  相似文献   

15.
We have developed a heterologous direct competitive enzyme-linked immunosorbent assay (ELISA) and a colloidal gold-based immunochromatographic (ICG) strip for the determination of the herbicide atrazine in water samples. The ELISA had a half-maximum inhibition concentration (IC50) of 0.12 ng mL?1 and a limit of detection (LOD, calculated as the IC15 value) of 0.01 ng mL?1. The average of recoveries for all spiked water samples was 96.5%. There was a good correlation between the data determined by this ELISA and those obtained by high performance liquid chromatography (HPLC) (r 2 ?=?0.996). The visual LOD of the ICG strip assay was 2 ng mL?1. The assay process only took 10 min, and no sample pretreatment was required. Its high specificity, sensitivity and fast detection made the strip well suited for on-site screening of atrazine in water samples. Both the ELISA and the ICG strip assay are useful for rapid analysis of a large number of water samples at low cost.
Figure
A heterologous direct competitive enzyme-linked immunosorbent assay (ELISA) and a colloidal gold-based immunochromatographic (ICG) strip assay are proposed for the determination of the herbicide atrazine in water samples.  相似文献   

16.
The authors describe a sensitive surface-enhanced Raman scattering (SERS)-based aptasensor for the detection of the food pathogen Vibrio parahaemolyticus. Nanostructures consisting of Fe3O4@Au particles wrapped with graphene oxide (GO) were used both as SERS substrates and separation tools. A first aptamer (apt 1) was immobilized on the Fe3O4@Au/GO nanostructures to act as a capture probe via the affinity binding of aptamer and V. parahaemolyticus. A second aptamer (apt-2) was modified with the Raman reporter molecule TAMRA to act as a SERS sensing probes that binds to the target the same way as the Fe3O4@Au/GO-apt 1. The sandwich formed between Fe3O4@Au/GO-apt 1/V. parahaemolyticus and apt 2-TAMRA can be separated with the aid of a magnet. The concentration of V. parahaemolyticus can be quantified by measurement of the SERS intensity of TAMRA. Under optimal conditions, the signal is linearly related to the V. parahaemolyticus concentration in the range between 1.4 × 102 to 1.4 × 106 cfu·mL?1, with a detection limit of 14 cfu·mL?1. Recoveries ranging from 98.5% to 105% are found when analyzing spiked salmon samples. In our perception, the assay described here is a useful tool for quantitation of V. parahaemolyticus in real samples.
Graphical abstract GO wrapped Fe3O4@Au nanostructures were synthesized as the substrate and modified with with a first aptamer (apt 1) to capture V. parahaemolyticus. TAMRA labelled aptamer 2 was then used as signal probe. The V. parahaemolyticus concentrations are closely related to the Raman intensity of TAMRA.
  相似文献   

17.
A sensitive fluorescent assay was developed for the detection of DNA specifically for Staphylococcus aureus. A sandwich-type detection system was fabricated by first immobilizing biotinylated capture DNA on avidin-modified wells of microplates, then hybridizing the capture DNA with one end of the target DNA, and then recognizing the other end of the target DNA with a signal probe labeled with CdTe nanocrystals and gold nanoparticles (Au-NPs) at the 3′- and 5′-terminus, respectively. Hybridization was monitored by measuring the fluorescent intensity of the assembly. The experimental results demonstrated that the incorporation of Au-NPs in this detection system can significantly enhance the sensitivity and the selectivity because a single Au-NP can be loaded with hundreds of signal DNA probe strands modified with CdTe nanocrystals. Under the optimized conditions, a detection limit of 10 fmol of DNA per L can be achieved and at least 50 colony forming units of Staph. aureus per mL of sample can be detected. The method was assessed by analyzing real samples, and it was validated by comparing it to an official standard method.
Figure
A sensitive fluorescent assay was developed for the detection of DNA specifically for Staphylococcus aureus, using nanogold linked CdTe nanocrystals as signal amplification labels  相似文献   

18.
A rapid and automated method was developed for the determination of bacterial contamination and using Escherichia coli as a model microorganism. The method involves the use of a sensor connected to a flow injection (FI) system. The sample is introduced through a flow injection system into a piezoelectric quartz crystal (PQC) flow-cell. The resulting change of the resonance frequency is related to the bacterial contamination in the sample. The parameters associated with the flow system and the conditions for introducing the sample culture were optimized. Calibration curves are linear in the range from 3.2?×?107 to 3.2?×?109 cfu per mL-1, with a correlation coefficient of 0.997. The reproducibility was between 3.1 and 7.6%, and the detection limit is 1.1?×?107 cfu per mL-1. The method allowed the determination of bacterial contamination in residual water and in samples of milk and chicken stock within 5 h, while the conventional plate count method requires 24 to 48 h. The results obtained by these two methods are in good agreement.
Figure
A rapid and automated method for the determination of bacterial growth contamination is proposed and Escherichia coli was used as a model microorganism. The methodology involves the use of a piezoelectric quartz crystal (PQC) sensor connected to a flow injection (FI) system. The sample was introduced through the FI system and the resonant frequency change of PQC is related to the bacterial contamination in the sample. The method allows the successful determination of bacteria in residual water and several food samples  相似文献   

19.
We have made a comparison of (a) different surface chemistries of SPR sensor chips (such as carboxymethylated dextran and carboxymethylated C1) and (b) of different assay formats (direct, sandwich and subtractive immunoassay) in order to improve the sensitivity of the determination of the model bacteria Acidovorax avenae subsp. citrulli (Aac). The use of the carboxymethylated sensor chip C1 resulted in a better sensitivity than that of carboxymethylated dextran CM5 in all the assay formats. The direct assay format, in turn, exhibits the best sensitivity. Thus, the combination of a carboxymethylated sensor chip C1 with the direct assay format resulted in the highest sensitivity for Aac, with a limit of detection of 1.6?×?106 CFU mL-1. This SPR immunosensor was applied to the detection of Aac in watermelon leaf extracts spiked with the bacteria, and the lower LOD is 2.2?×?107 CFU mL?1.
Figure
Possible strategies to improve the surface plasmon resonance-based immmunodetection of bacterial cells Acidovorax avenae subsp. citrulli (Aac) was used as a model pathogen. Two different sensor surfaces (carboxymethylated dextran CM5 and carboxymethylated C1) were compared. Direct detection, sandwich system and subtractive assay were investigated. The combination of a C1 chip with the direct assay format resulted in the highest sensitivity for Aac, with a limit of detection of 1.6*106 CFU mL?1  相似文献   

20.
We report on label-free immunosensors for the highly sensitive detection of avian influenza virus. The method makes use of the microcantilevers of an atomic force microscope onto which monoclonal antibodies against avian influenza virus were covalently immobilized. The factors influencing the performance of the resulting immunosensors were optimized by measuring the deflections of the cantilever via optical reflection, and this resulted in low detection limits and a wide analytical range. The differential deflection signals revealed specific antigen binding and their intensity is proportional to the logarithm of the concentrations of the virus in solution. Under optimal conditions, the immunosensors exhibit a linear response in the 7.6 ng mL?1 to 76 μg mL?1 concentration range of avian influenza virus, and the detection limit is 1.9 ng mL?1.
Figure
Label-free immunosensors based on microcantilevers of an atomic force microscope was fabricated by covalently immobilizing monoclonal antibodies to avian influenza virus onto the microcantilever. The performance and factors influencing the performance of the resulting immunosensors were investigated in detail by measuring the cantilever deflections using the optical reflection technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号