首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We report on the first label-free electrochemiluminescence (ECL) immunosensor for α-fetoprotein (AFP). It is based on the use of CdSe quantum dots that were electrodeposited directly on a gold electrode from an electrolyte (containing cadmium sulfate, EDTA and selenium dioxide) by cycling the potential between 0 and -1.2?V (vs. SCE) for 60?s. The electrodeposited dots were characterized by scanning electron microscopy and energy dispersive spectroscopy. Under optimal conditions, the specific immunoreaction between AFP and anti-AFP resulted in a decrease of the ECL signal because of the steric hindrance and the transfer inhibition by peroxodisulfate. The quenching effect of the immunoreaction on the intensity of the ECL was used to establish a calibration plot which is linear in the range from 0.05 to 200?ng?mL?1. The detection limit is 2?pg?mL?1. The assay is highly sensitive and satisfactorily reproducible. In our opinion it opens new avenues to apply ECL in label-free biological assays.
Figure
We report on the first label-free electrochemiluminescence (ECL) immunosensor for α-fetoprotein (AFP). It is based on the use of CdSe quantum dots that were electrodeposited directly on a gold electrode from an electrolyte. Under optimal conditions, the specific immunoreaction between AFP and anti-AFP resulted in a decrease of the ECL signal because of the steric hindrance and the transfer inhibition by peroxodisulfate  相似文献   

2.
An electrochemiluminescence-based immunoassay using quantum dots (QDs) as labels for the carcinoembryonic antigen (CEA) was developed using an electrode modified with leafs of nanoporous gold. CEA was initially immobilized on the electrode via a sandwich immunoreaction, and then CdTe quantum dots capped with thioglycolic acid were used to label the second antibody. The intensity of the ECL of the QDs reflects the quantity of CEA immobilized on the electrode. Thus, in the presence of dithiopersulfate as the coreactant, the ECL serves as the signal for the determination of CEA. The intensity of the electroluminescence (ECL) of the electrode was about 5.5-fold higher than that obtained with a bare gold electrode. The relation between ECL intensity and CEA concentration is linear in the range from 0.05 to 200?ng.mL-1, and the detection limit is 0.01?ng.mL-1. The method has the advantages of high sensitivity, good reproducibility and long-term stability, and paves a new avenue for applying quantum dots in ECL-based bioassays.
Figure
Electrochemiluminescence Immunoassay Based on CdTe Quantun Dots as labels at Nanoporous Gold Leaf electrode  相似文献   

3.
A competitive microplate fluoroimmunoassay was developed for the determination of human serum albumin in urine. It is based on the use of biotinylated CdTe quantum dots (QDs) whose synthesis is optimised in terms of storage stability, purification, and signal-to-noise ratio. The bioconjugated QDs were characterised by gel chromatography and gel electrophoresis. Storage stability and quantum yield were investigated. The excitation/emission wavelengths are 360/620?nm. The immunoassay of human serum albumin in urine has a working range from 1.7 to 10?μg.mL?1, and the limit of detection is 1.0?μg.mL?1.
Figure
Preparation of biotinylated quantum dots is described. Their structure consists of biotinylated denatured bovine serum albumin attached to the quantum dot surface. Fluoroimmunoassay for human serum albumin was developed utilizing thus prepared bioconjugate.  相似文献   

4.
Functionalized gold nanoparticles capped with polyoxometalates were prepared by a simple photoreduction technique where phosphododecamolybdates serve as reducing reagents, photocatalysts, and as stabilizers. TEM images of the resulting gold nanoparticles show the particles to have a relative narrow size distribution. Monolayer and multilayer structures of the negatively charged capped gold nanoparticles were deposited on a poly(vinyl pyridine)-derivatized indium-doped tin oxide (ITO) electrode via the layer-by-layer technique. The surface plasmon resonance band of the gold nanoparticles displays a blue shift on the surface of the ITO electrode. This is due to the substrate-induced charge redistribution in the gold nanoparticles and a change in the electromagnetic coupling between the assembled nanoparticles. The modified electrode exhibits the characteristic electrochemical behavior of surface-confined phosphododecamolybdate and excellent electrocatalytic activity. The catalysis of the modified electrode towards the model compound iodate was systematically studied. The heterogeneous catalytic rate constant for the electrochemical reduction of iodate was determined by chronoamperometry to be ca. 1.34?×?105 mol?1·L·s?1. The amperometric method gave a linear range from 2.5?×?10?6 to 1.5?×?10?3 M and a detection limit of 1.0?×?10?6 M. We believe that the functionalized gold nanoparticles prepared by this photoreduction technique are advantageous in terms of fabrication of sensitive and stable redox electrodes.
Figa
Functionalized gold nanoparticles (Au-NPs) capped with polyoxometalates were prepared by a simple photoreduction technique. The negatively charged capped Au-NPs were deposited on a poly(vinyl pyridine)-derivatized indium-doped tin oxide electrode via the layer-by-layer technique. The modified electrode exhibits the characteristic electrochemical behavior of surface-confined phosphododecamolybdate, and excellent catalytic activity.  相似文献   

5.
A method was developed for the determination of gold ion in water samples using microextraction based on the ultrasound-assisted emulsification of solidified floating organic drops, followed by the flame atomic absorption spectrometry. N-(4-{4-[(anilinocarbothioyl)amino]benzyl}phenyl)-N-phenylthiourea was used as chelating agent. The parameters affecting the extraction and complex formation (including the type and volume of the extracting solvent, time of sonication and centrifugation, pH, amount of the chelating agent, and sample ionic strength) were optimized. Under the optimum conditions, the calibration graph is linear in the range from 1.5 to 400 ng mL?1, with a limit of detection of 0.45 ng mL?1. The relative standard deviation for ten replicate determinations of gold ion in a concentration of 175 ng mL?1 was 1.7%. The procedure was successfully applied to the determination of gold in water samples, in pharmaceutical and synthetic samples, and in a standard reference material.
Figa
The schematic procedure of the ultrasound-assisted emulsification solidified floating organic drop microextraction is shown in above figure from A to E.  相似文献   

6.
We have developed a “turn on” model of an electrochemiluminescence (ECL) based assay for lead ions. It is based on the formation of a G-quadruplex from an aptamer labeled with quantum dots (QDs) and placed on an electrode modified with of graphene and gold nanoparticles (AuNPs). A hairpin capture probe was labeled with a thiol group at the 5′-end and with an amino group at the 3′-end. It was then self-assembled on the electrode modified with graphene and AuNPs. In the absence of Pb(II), the amino tag on one end of the hairpin probe is close to the surface of the electrode and therefore unable to interact with the QDs because of steric hindrance. The ECL signal is quite weak in this case. If, however, Pb(II) is added, the stem-loop of the aptamer unfolds to form a G-quadruplex. The amino group at the 3′-end will become exposed and can covalently link to a carboxy group on the surface of the CdTe QDs. This leads to strong ECL. Its intensity increases (“turns on”) with the concentration of Pb(II). Such a “turn-on” method does not suffer from the drawbacks of “turn-off” methods. ECL intensity is linearly related to the concentration of Pb(II) in the 10 p mol·L?1 to 1 n mol·L?1 range, with a 3.8 p mol·L?1 detection limit. The sensor exhibits very low detection limits, good selectivity, satisfying stability, and good repeatability.
Figure
A “turn on” model of ECL method was developed based on G-quadruplex of Graphene/AuNPs of aptamer probe by using quantum dots as label. ECL intensity is increased with the increase of Pb2+ concentration. The responsive ECL intensity was linearly related to the Pb2+ concentration in the range of 1.0?×?10?11?~?1.0?×?10?9 mol·L?1, with a detection limit of 3.82?×?10?12 mol·L?1.  相似文献   

7.
We have developed a technique for the solid-phase extraction of gold using various kinds of pyridine-functionalized nanoporous silica prior to its determination in various samples using FAAS. The effects of solution pH, sample and eluent flow rate, sample volume and of potentially interfering ions are compared. The limits of detections vary from 28 to 53?pg?mL?1. The accuracy and precision are between 99.8% and 98.3?% and 0.7 to 1.6?% (RSD), respectively. The method was successfully applied to several standard reference materials.
Figure
A technique has been developed for the solid-phase extraction of gold using various kinds of pyridine-functionalized nanoporous silica prior to its determination in various samples using FAAS.  相似文献   

8.
We describe a method for the modification of gold nanoparticles (Au-NPs) with benzo-15-crown-5 that led to the development of a colorimetric assay for Ag(I) ion. The brown color of a solution of the modified Au-NPs turns to purple on addition of Ag(I) ion. The ratio of the UV–vis absorption at 600 nm and 525 nm is proportional to the concentration of Ag(I) ions in the range from 20 to 950 nM, and the detection limit is 12.5 nM. Other metal ions do not interfere if present in up to millimolar concentrations. The method enables a rapid determination of Ag(I) in lake and drinking water and is amenable to bare-eye readout.
Figure
The selective colorimetric detection of Ag+ ion using gold nanoparticles modified with benzo crown ether is reported with a color detection limit ~50 nM by naked-eye. The feasibility and simplicity of this cost-effective sensing system demonstrates great potential for the detection of sliver ion in real samples.  相似文献   

9.
We describe a simple, environmentally friendly and selective technique for the determination of ochratoxin A (OTA) in urine. It involves (a) the use of a molecularly imprinted polymer as a sorbent in micro-solid-phase extraction in which the sorbent is contained in a propylene membrane envelope, and (b) separation and detection by capillary electrophoresis (CE). Under optimized conditions, response is linear in the range between 50 and 300 ng mL?1 (with a correlation coefficient of 0.9989), relative standard deviations range from 4 to 8 %, the detection limit for OTA in urine is 11.2 ng mL?1 (with a quantification limits of 32.5 ng mL?1) which is lower than those of previously reported methods for solid-phase extraction combined with CE. The recoveries of OTA from urine spiked at levels of 50, 150 and 300 ng mL?1 ranged from 93 to 97 %.
Figure
?  相似文献   

10.
We describe a sensitive method for the immunochromatographic determination of aflatoxin B1. It is based on the following steps: 1) Competitive interaction between non-labeled specific primary antibodies and target antigens in a sample and in the test zone of a membrane; 2) detection of the immune complexes on the membrane by using a secondary antibodies labeled with gold nanoparticles. The method enables precise adjustment of the required quantities of specific antibodies and the colloidal (gold) marker. It was applied in a lateral flow format to the detection of aflatoxin B1 and exhibits a limit of detection (LOD) of 160 pg?·?mL?1 if detected visually, and of 30 pg?·?mL?1 via instrumental detection. This is significantly lower than the LOD of 2 ng?·?mL?1 achieved by conventional lateral flow analysis using the same reagents. Figure
Immunochromatography with secondary labeled antibodies caused 10-fold decrease of detection limit  相似文献   

11.
We report on a biosensor for organophosphate pesticides (OPs) by exploiting their inhibitory effect on the activity of acetylcholinesterase (AChE). A boron-doped diamond (BDD) electrode was modified with a nanocomposite prepared from carbon spheres (CSs; with an average diameter of 500 nm) that were synthesized from resorcinol and formaldehyde, and then were coated with gold nanoparticles (AuNPs) by chemically growing them of the CSs. Compared to a bare BDD electrode, the electron transfer resistance is lower on this new electrode. Compared to an electrode without Au-NPs, the peak potential is negatively shifted by 42 mV, and the peak current is increased by 55 %. This is ascribed to the larger surface in the AuNP-CS nanocomposite which improves the adsorption of AChE, enhances its activity, and facilitates electrocatalysis. Under optimum conditions, the inhibitory effect of chlorpyrifos is linearly related to the negative log of its concentration in the 10?11 to 10?7 M range, with a detection limit of 1.3?×?10?13 M. For methyl parathion, the inhibition effect is linear in the 10?12 to 10?6 M range, and the detection limit is 4.9?×?10?13 M. The biosensor exhibits good precision and acceptable operational and temporal stability.
Figure
A novel acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres was firstly prepared to detect organophosphate pesticides. This biosensor exhibited higher sensitivity, lower detection limit, good reproducibility and acceptable stability.  相似文献   

12.
We report on a novel enzyme-enhanced label for the electrochemical determination of diethylstilbestrol (DES). The label was obtained by orientation-controlled immobilization of a multiplex horseradisch peroxidase (HRP) conjugated polymer on gold nanoparticles (AuNPs) using the Envision reagent (EV) which is an enzyme-polymer complex that contains HRP and anti-IgG antibody in a polydextrin amine skeleton. The AuNPs were modified with Concanavalin A (Con A) and served as a carrier for immobilization of the EV?DES antibody composite. This resulted in a bioconjugate of the type AuNP?Con A?EV?DES Ab which was employed as the label. On exposure to samples containing DES, a sandwich immunocomplex is formed between antibody against DES (which was immobilized on a glassy carbon electrode and is acting as a capture probe), DES (the analyte), and the above label as the signal tracer. Hemin was used as an electronic mediator in the reaction of HRP. The HRP on the label catalyzes the oxidative formation of hydrogen peroxide at pH 7.0, and this induces an increased reductive current in the presence of hemin as an electron mediator. Under optimal conditions, the current increases linearly with increasing concentrations of DES in the range from 5 to 500 pg?·?mL?1, with a detection limit as low as 2 pg?·?mL?1 (at an S/N of 3). The method exhibits high selectivity and good stability. It works without incubation so that the time for an assay is shortened to 5 min. The assays was successfully applied to the determination of DES in milk samples.
Figure
?  相似文献   

13.
We have developed a method for the determination of microcystin-leucine-arginine (MC-LR) in water samples that is based on the quenching of the fluorescence of bioconjugates between CdSe/CdS quantum dots (QDs) and the respective antibody after binding of MC-LR. The core-shell CdSe/CdS QDs were modified with 2-mercaptoacetic acid to improve water solubility while their high quantum yields were preserved. Monoclonal MC-LR antibody was then covalently bioconjugated to the QDs. It was found that the fluorescence intensity of the bioconjugates was quenched in the presence of MC-LR. A linear relationship exists between the extent of quenching and the concentration of MC-LR. Parameters affecting the quenching were investigated and optimized. The limit of detection is 6.9?×?10?11 mol L?1 (3σ). The method was successfully applied to the determination of MC-LR in water samples.
Figure
Bioconjugates of CdSe/CdS quantum dots and anti-microcystin-leucine-arginine (MC-LR) antibody were prepared through step A to C. Their fluorescence intensity was quenched linearly with addition of MC-LR at different concentrations (step D). A method for determination of MC-LR was thus established and it was simple, sensitive and specific with low-cost instrumentation  相似文献   

14.
We describe a silver(I)-selective carbon paste electrode modified with multi-walled carbon nanotubes and a silver-chelating Schiff base, and its electrochemical response to Ag(I). Effects of reduction potential and time, accumulation time, pH of the solution and the stripping medium were studied by differential pulse anodic stripping voltammetry and optimized. The findings resulted in a method for the determination of silver over a linear response range (from 0.5 to 235 ng?mL?1) and with a detection limit as low as 0.08 ng?mL?1. The sensor displays good repeatability (with the RSD of ±?2.75 % for 7 replicates) and was applied to the determination of Ag(I) in water samples and X-ray photographic films.
Figure
Open circuit accumulation of Ag(I) onto a surface of EHPO-MCPE and determination by Differential pulse anodic stripping voltammetry  相似文献   

15.
We report on a highly sensitive and selective electrochemiluminescence (ECL) based method for the determination of pentachlorophenol (PCP). It is based on a new hybrid material composed of CdS quantum dots (QDs), graphene, and carbon nanotubes (CNTs), and uses peroxodisulfate as the coreactant. The use of this system results in a nearly 18-fold increase in ECL intensity. On interaction between PCP and the QDs, a decrease in ECL intensity is observed at PCP in a concentration as low as 1.0 pM and over a wide linear range (from 1.0 pM to 1.0 nM). The method is hardly affected by other chlorophenols and nitrophenols, and the electrode can be recycled.
Figure
?  相似文献   

16.
The anti-schizophrenic drug risperidone (RSP) exerts an inhibitory effect on the chemiluminescence (CL) of the luminol-lysozyme system. This finding forms the basis for a sensitive flow injection method for its determination at picogram levels. RSP binds to Trp62 in the lysozyme, and this leads to a conformational change upon which the CL of the system is quenched. The decrease in CL is proportional to the logarithm of the concentration of RSP, and the calibration graph is linear in the range from 0.1 pg?mL?1 to 1.0 ng?mL?1, with relative standard deviations of <5.0%, and a detection limit of 0.05 pg?mL?1 (3σ). At a flow rate of 2.0 mL?min?1, the whole process including sampling and washing is completed within 20 s. The method was successfully applied to monitoring RSP in human urine after incorporation of 2 mg of RSP, with a total excretion of 16.6% within 8.5 h.
Figure
The reaction of lysozyme with risperidone using luminol as luminescence reagent by the luminol-lysozyme FI-CL system and its application.  相似文献   

17.
We report on a 4-min microwave pyrolytic method for the preparation of fluorescent and water-soluble silicon-hybrid carbon dots (C-dots) with high fluorescent quantum yield. The material is prepared by preheating aminopropyltriethoxysilane and ethylene diamine tetraacetic acid for 1 min, then adding a mixture of poly(ethylene glycol) and glycerin to the solution and heating for another 3 min. It is found that the hybrid carbon dots strongly enhance the chemiluminescence (CL) of the luminol/N-bromosuccinimide system. A study on the enhancement mechanism via CL, fluorescence and electron paramagnetic resonance spectroscopy showed that the effect most probably is due to electrostatic interaction between the C-dots and the luminol anion which facilitates electron transfer from luminol anion to the N-bromosuccinimide oxidant. CL intensity is linearly related to the concentration of the C-dots in the range between 1.25 and 20 μg mL?1. The detection limit is 0.6 μg mL?1 (at an S/N of 3).
Figure
New chemiluminescent enhancement property of the fluorescent silican-hybrid carbon dots in luminol-N-bromosuccinimide system has been explored.  相似文献   

18.
We describe a new method for the separation and preconcentration of traces of Au(III) in environmental samples. Sorbents made from modified multiwalled carbon nanotubes and conducting polymers (PANI and PEDOT) were used for solid-phase extraction. The Au(III) ions are adsorbed as a result of the interaction with the electron pairs of =N- and -S- groups. Effects of pH value, flow rate and volume of sample, type, volume and concentration of eluent, and the adsorption capacity were investigated. The maximum adsorption capacity of MWCNTs/PANI and MWCNTs/PEDOT are 159 and 176?mg?g?1, and the detection limits of this method are below 0.3 and 0.5?ng?mL?1, respectively. The procedure was successfully applied to the determination of traces of Au(III) in a reference material and in environmental samples.
Figure
The multiwalled carbon nanotubes/conducting polymers (PANI and PEDOT) were used for solid-phase extraction of Au(III) ions. The Au(III) adsorbed on macromolecules chains; resulting from sharing an electron pair of = N?C and ?CS?C groups of conducting polymers with gold ions. The final results demonstrate that nanocomposites are convenient for preconcentration and determination of gold from environmental samples.  相似文献   

19.
We have developed a gold ion-imprinted polymer (GIP) by incorporating a dipyridyl ligand into an ethylene glycol dimethacrylate matrix which then was coated onto porous silica particles. The material was used for the selective extraction of ultratrace quantities of gold ion from mine stones, this followed by its quantitation by FAAS. The effects of concentration and volume of eluent, pH of the solution, flow rates of sample and eluent, and effect of potentially interfering ions, especially palladium and platinum, was investigated. The limit of detection is <0.2 ng?mL?1, the precision (RSD%) is 1.03 %, and recoveries are >99 %. In order to show the high selectivity and efficiency of the new sorbent, the results were compared to those obtained with more simple sorbents possessing the same functional groups. The accuracy of the method was demonstrated by the accurate determination of gold ions in a certified reference material. To the best of our knowledge, there is no report so far on an imprint for gold ions that has such a selectivity over Pd(II) and Pt(II) ions.
Figure
Coating of gold ion imprinted polymer on nanoporous silica  相似文献   

20.
We describe the fabrication of a sensitive label-free electrochemical biosensor for the determination of sequence-specific target DNA. It is based on a glassy carbon electrode (GCE) modified with graphene, gold nanoparticles (Au-NPs), and polythionine (pThion). Thionine was firstly electropolymerized on the surface of the GCE that was modified with graphene by cyclic voltammetry. The Au-NPs were subsequently deposited on the surface of the pThion/graphene composite film by adsorption. Scanning electron microscopy and electrochemical methods were used to investigate the assembly process. Differential pulse voltammetry was employed to monitor the hybridization of DNA by measuring the changes in the peak current of pThion. Under optimal conditions, the decline of the peak current is linearly related to the logarithm of the concentration of the target DNA in the range from 0.1 pM to 10 nM, with a detection limit of 35 fM (at an S/N of 3). The biosensor exhibits good selectivity, acceptable stability and reproducibility.
Figure
A label-free DNA biosensor based on Au-NPs/pThion/graphene modified electrode has been fabricated. Differential pulse voltammetry (DPV) was employed to monitor DNA hybridization event by measurement of the peak current changes of pThion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号