首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with a problem of determining lot-sizes of jobs in a real-world job shop-scheduling in the presence of uncertainty. The main issue discussed in this paper is lot-sizing of jobs. A fuzzy rule-based system is developed which determines the size of lots using the following premise variables: size of the job, the static slack of the job, workload on the shop floor, and the priority of the job. Both premise and conclusion variables are modelled as linguistic variables represented by using fuzzy sets (apart from the priority of the job which is a crisp value). The determined lots’ sizes are input to a fuzzy multi-objective genetic algorithm for job shop scheduling. Imprecise jobs’ processing times and due dates are modelled by using fuzzy sets. The objectives that are used to measure the quality of the generated schedules are average weighted tardiness of jobs, the number of tardy jobs, the total setup time, the total idle time of machines and the total flow time of jobs. The developed algorithm is analysed on real-world data obtained from a printing company.  相似文献   

2.
Integrated production–distribution planning is one of the most important issues in supply chain management (SCM). We consider a supply chain (SC) network to consist of a manufacturer, with multiple plants, products, distribution centers (DCs), retailers and customers. A multi-objective linear programming problem for integrating production–distribution, which considers various simultaneously conflicting objectives, is developed. The decision maker’s imprecise aspiration levels of goals are incorporated into the model using a fuzzy goal programming approach. Due to complexity of the considered problem we propose three meta-heuristics to tackle the problem. A simple genetic algorithm and a particle swarm optimization (PSO) algorithm with a new fitness function, and an improved hybrid genetic algorithm are developed. In order to show the efficiency of the proposed methods, two classes of problems are considered and their instances are solved using all methods. The obtained results show that the improved hybrid genetic algorithm gives us the best solutions in a reasonable computational time.  相似文献   

3.
Manpower scheduling is an intricate problem in production and service environments with the purpose of generating fair schedules that consider employers’ objectives and employees’ preferences as much as possible. However, sometimes, vagueness of information related to employers’ objectives and employees’ preferences leads to the fuzzy nature of the problem. This paper presents a multi-objective manpower scheduling model regarding the lack of clarity on the target values of employers’ objectives and employees’ preferences. Hence, a fuzzy goal programming model is developed for the presented model. Afterwards, two fuzzy solution approaches are used to convert the fuzzy goal programming model to two single-objective models. Finally, the results obtained by both single-objective models are compared with each other to select the solution that has the greatest degree of the satisfaction level of employers’ objectives and employees’ preferences.  相似文献   

4.
In multi-objective convex optimization it is necessary to compute an infinite set of nondominated points. We propose a method for approximating the nondominated set of a multi-objective nonlinear programming problem, where the objective functions and the feasible set are convex. This method is an extension of Benson’s outer approximation algorithm for multi-objective linear programming problems. We prove that this method provides a set of weakly ε-nondominated points. For the case that the objectives and constraints are differentiable, we describe an efficient way to carry out the main step of the algorithm, the construction of a hyperplane separating an exterior point from the feasible set in objective space. We provide examples that show that this cannot always be done in the same way in the case of non-differentiable objectives or constraints.  相似文献   

5.
The comprehensive model with “weighted-objective nearness degree” is introduced in the process of multi-objective decision-making, by which a reduction problem of inference antecedents is studied in traditional fuzzy inference method. Moreover, based on the comprehensive model with “weighted-objective nearness degree”, SMTT fuzzy inference algorithm is proposed. This algorithm not only shows the relative importance of every antecedent component in fuzzy inference, but also considers the influence of nearness degree between every antecedent component’s evaluation and inference objective on inference conclusions. The enactment of inference objective reflects the preference degree of decision maker to every antecedent component’s evaluation. Therefore, it is much fitter for the demands of practical inference.  相似文献   

6.
We consider a scheduling model in which several batches of jobs need to be processed by a single machine. During processing, a setup time is incurred whenever there is a switch from processing a job in one batch to a job in another batch. All the jobs in the same batch have a common due date that is either externally given as an input data or internally determined as a decision variable. Two problems are investigated. One problem is to minimize the total earliness and tardiness penalties provided that each due date is externally given. We show that this problem is NP-hard even when there are only two batches of jobs and the two due dates are unrestrictively large. The other problem is to minimize the total earliness and tardiness penalties plus the total due date penalty provided that each due date is a decision variable. We give some optimality properties for this problem with the general case and propose a polynomial dynamic programming algorithm for solving this problem with two batches of jobs. We also consider a special case for both of the problems when the common due dates for different batches are all equal. Under this special case, we give a dynamic programming algorithm for solving the first problem with an unrestrictively large due date and for solving the second problem. This algorithm has a running time polynomial in the number of jobs but exponential in the number of batches.  相似文献   

7.
Classic bilevel programming deals with two level hierarchical optimization problems in which the leader attempts to optimize his/her objective, subject to a set of constraints and his/her follower’s solution. In modelling a real-world bilevel decision problem, some uncertain coefficients often appear in the objective functions and/or constraints of the leader and/or the follower. Also, the leader and the follower may have multiple conflicting objectives that should be optimized simultaneously. Furthermore, multiple followers may be involved in a decision problem and work cooperatively according to each of the possible decisions made by the leader, but with different objectives and/or constraints. Following our previous work, this study proposes a set of models to describe such fuzzy multi-objective, multi-follower (cooperative) bilevel programming problems. We then develop an approximation Kth-best algorithm to solve the problems.  相似文献   

8.
Multi-item inventory models with two storage facility and bulk release pattern are developed with linearly time dependent demand in a finite time horizon under crisp, stochastic and fuzzy-stochastic environments. Here different inventory parameters—holding costs, ordering costs, purchase costs, etc.—are assumed as probabilistic or fuzzy in nature. In particular cases stochastic and crisp models are derived. Models are formulated as profit maximization principle and three different approaches are proposed for solution. In the first approach, fuzzy extension principle is used to find membership function of the objective function and then it’s Graded Mean Integration Value (GMIV) for different optimistic levels are taken as equivalent stochastic objectives. Then the stochastic model is transformed to a constraint multi-objective programming problem using Stochastic Non-linear Programming (SNLP) technique. The multi-objective problems are transferred to single objective problems using Interactive Fuzzy Satisfising (IFS) technique. Finally, a Region Reducing Genetic Algorithm (RRGA) based on entropy has been developed and implemented to solve the single objective problems. In the second approach, the above GMIV (which is stochastic in nature) is optimized with some degree of probability and using SNLP technique model is transferred to an equivalent single objective crisp problem and solved using RRGA. In the third approach, objective function is optimized with some degree of possibility/necessity and following this approach model is transformed to an equivalent constrained stochastic programming problem. Then it is transformed to an equivalent single objective crisp problem using SNLP technique and solved via RRGA. The models are illustrated with some numerical examples and some sensitivity analyses have been presented.  相似文献   

9.
A multi-objective optimization evolutionary algorithm incorporating preference information interactively is proposed. A new nine grade evaluation method is used to quantify the linguistic preferences expressed by the decision maker (DM) so as to reduce his/her cognitive overload. When comparing individuals, the classical Pareto dominance relation is commonly used, but it has difficulty in dealing with problems involving large numbers of objectives in which it gives an unmanageable and large set of Pareto optimal solutions. In order to overcome this limitation, a new outranking relation called “strength superior” which is based on the preference information is constructed via a fuzzy inference system to help the algorithm find a few solutions located in the preferred regions, and the graphical user interface is used to realize the interaction between the DM and the algorithm. The computational complexity of the proposed algorithm is analyzed theoretically, and its ability to handle preference information is validated through simulation. The influence of parameters on the performance of the algorithm is discussed and comparisons to another preference guided multi-objective evolutionary algorithm indicate that the proposed algorithm is effective in solving high dimensional optimization problems.  相似文献   

10.
This paper proposes a method for solving fuzzy multi-objective linear programming (FMOLP) problems where all the coefficients are triangular fuzzy numbers and all the constraints are fuzzy equality or inequality. Using the deviation degree measures and weighted max–min method, the FMOLP problem is transformed into crisp linear programming (CLP) problem. If decision makers fix the values of deviation degrees of two side fuzzy numbers in each constraint, then the δ-pareto-optimal solution of the FMOLP problems can be obtained by solving the CLP problem. The bigger the values of the deviation degrees are, the better the objectives function values will be. So we also propose an algorithm to find a balance-pareto-optimal solution between two goals in conflict: to improve the objectives function values and to decrease the values of the deviation degrees. Finally, to illustrate our method, we solve a numerical example.  相似文献   

11.
In most deterministic scheduling problems, job-processing times are regarded as constant and known in advance. However, in many realistic environments, job-processing times can be controlled by the allocation of a common resource to jobs. In this paper, we consider the problem of scheduling jobs with arbitrary release dates and due dates on a single machine, where job-processing times are controllable and are modeled by a non-linear convex resource consumption function. The objective is to determine simultaneously an optimal processing permutation as well as an optimal resource allocation, such that no job is completed later than its due date, and the total resource consumption is minimized. The problem is strongly NP\mathcal{NP}-hard. A branch and bound algorithm is presented to solve the problem. The computational experiments show that the algorithm can provide optimal solution for small-sized problems, and near-optimal solution for medium-sized problems in acceptable computing time.  相似文献   

12.
This research focuses on scheduling jobs with varying processing times and distinct due dates on a single machine subject to earliness and tardiness penalties. Hence, this work will find application in a just-in-time (JIT) production environment. The scheduling problem is formulated as a 0–1 linear integer program with three sets of constraints, where the objective is to minimize the sum of the absolute deviations between job completion times and their respective due dates. The first two sets of constraints are equivalent to the supply and demand constraints of an assignment problem. The third set, which represents the process time non-overlap constraints, is relaxed to form the Lagrangian dual problem. The dual problem is then solved using the subgradient algorithm. Efficient heuristics have also been developed in this work to yield initial primal feasible solutions and to convert primal infeasible solutions to feasibility. The computational results show that the relative deviation from optimality obtained by the subgradient algorithm is less than 3% for problem sizes varying from 10 to 100 jobs.  相似文献   

13.
旅游大规模定制(Tourism Mass Customization, TMC)模式实施的关键是通过对旅游供应链的调度优化处理旅游活动的“规模效应”与游客“个性化需求”之间的矛盾问题。运用经济学及模糊数学的理论方法分析并实现了TMC模式下存在的多阶段模糊规模效应量化处理。构建了引入规模效应量化的服务成本最小化、引入模糊时间窗的顾客满意度最大化及供应链协同度最大化为优化目标的TMC模式下多目标供应链调度优化模型。最后,通过蚁群算法实现TMC模式下多调度优化目标的求解并对优化效果进行对比研究。研究结果表明,TMC模式下供应链调度中旅游活动存在多阶段模糊规模效应并且可以量化处理;TMC模式中的规模效应具有合理的区间范围,旅游企业应注重规模效应与其他目标的均衡;蚂蚁算法在求解TMC模式下多目标优化问题方面不仅收敛速度快,而且通过对多调度目标优化效果的对比检验表明,性能稳健优良。  相似文献   

14.
A variable neighborhood search (VNS) algorithm has been developed to solve the multiple objective redundancy allocation problems (MORAP). The single objective RAP is to select the proper combination and redundancy levels of components to meet system level constraints, and to optimize the specified objective function. In practice, the need to consider two or more conflicting objectives simultaneously increases nowadays in order to assure managers or designers’ demand. Amongst all system level objectives, maximizing system reliability is the most studied and important one, while system weight or system cost minimization are two other popular objectives to consider. According to the authors’ experience, VNS has successfully solved the single objective RAP (Liang and Chen, Reliab. Eng. Syst. Saf. 92:323–331, 2007; Liang et al., IMA J. Manag. Math. 18:135–155, 2007). Therefore, this study aims at extending the single objective VNS algorithm to a multiple objective version for solving multiple objective redundancy allocation problems. A new selection strategy of base solutions that balances the intensity and diversity of the approximated Pareto front is introduced. The performance of the proposed multi-objective VNS algorithm (MOVNS) is verified by testing on three sets of complex instances with 5, 14 and 14 subsystems respectively. While comparing to the leading heuristics in the literature, the results show that MOVNS is able to generate more non-dominated solutions in a very efficient manner, and performs competitively in all performance measure categories. In other words, computational results reveal the advantages and benefits of VNS on solving multi-objective RAP.  相似文献   

15.
This paper studies a hierarchical optimization problem on an unbounded parallel-batching machine, in which two objective functions are maximum lateness induced by two sets of due dates, representing different purposes of two decision-makers. By a hierarchical optimization problem, we mean the problem of optimizing the secondary criterion under the constraint that the primary criterion is optimized. A parallel-batching machine is a machine that can handle several jobs in a batch in which all jobs start and complete respectively at the same time. We present an \(O(n\log P)\)-time algorithm and an \(O(n^3)\)-time algorithm for this hierarchical scheduling problem, where P is the total processing time of all jobs.  相似文献   

16.
We consider a batch scheduling problem on a single machine which processes jobs with resource dependent setup and processing time in the presence of fuzzy due-dates given as follows:1. There are n independent non-preemptive and simultaneously available jobs processed on a single machine in batches. Each job j has a processing time and a due-date.2. All jobs in a batch are completed together upon the completion of the last job in the batch. The batch processing time is equal to the sum of the processing times of its jobs. A common machine setup time is required before the processing of each batch.3. Both the job processing times and the setup time can be compressed through allocation of a continuously divisible resource. Each job uses the same amount of the resource. Each setup also uses the same amount of the resource.4. The due-date of each job is flexible. That is, a membership function describing non-decreasing satisfaction degree about completion time of each job is defined.5. Under above setting, we find an optimal batch sequence and resource values such that the total weighted resource consumption is minimized subject to meeting the job due-dates, and minimal satisfaction degree about each due-date of each job is maximized. But usually we cannot optimize two objectives at a time. So we seek non-dominated pairs i.e. the batch sequence and resource value, after defining dominance between solutions.A polynomial algorithm is constructed based on linear programming formulations of the corresponding problems.  相似文献   

17.
We consider a two-machine open shop problem where the jobs have release dates and due dates, and where all single operations have unit processing times. The goal is to minimize the weighted number of late jobs. We derive a polynomial time algorithm for this problem, thereby answering an open question posed in a recent paper by Brucker et al.This research was supported by the Christian Doppler Laboratorium für Diskrete Optimierung.  相似文献   

18.
In this study, a tabu search (TS) approach to the single machine total weighted tardiness problem (SMTWT) is presented. The problem consists of a set of independent jobs with distinct processing times, weights and due dates to be scheduled on a single machine to minimize total weighted tardiness. The theoretical foundation of single machine scheduling with due date related objectives reveal that the problem is NP-hard, rendering it a challenging area for meta-heuristic approaches. This paper presents a totally deterministic TS algorithm with a hybrid neighborhood and dynamic tenure structure, and investigates the strength of several candidate list strategies based on problem specific characteristics in increasing the efficiency of the search. The proposed TS approach yields very high quality results for a set of benchmark problems obtained from the literature.  相似文献   

19.
We consider the single machine scheduling problem to minimize total completion time with fixed jobs, precedence constraints and release dates. There are some jobs that are already fixed in the schedule. The remaining jobs are free to be assigned to any free-time intervals on the machine in such a way that they do not overlap with the fixed jobs. Each free job has a release date, and the order of processing the free jobs is restricted by the given precedence constraints. The objective is to minimize the total completion time. This problem is strongly NP-hard. Approximability of this problem is studied in this paper. When the jobs are processed without preemption, we show that the problem has a linear-time n-approximation algorithm, but no pseudopolynomial-time (1 − δ)n-approximation algorithm exists even if all the release dates are zero, for any constant δ > 0, if P ≠ NP, where n is the number of jobs; for the case that the jobs have no precedence constraints and no release dates, we show that the problem has no pseudopolynomial-time (2 − δ)-approximation algorithm, for any constant δ > 0, if P ≠ NP, and for the weighted version, we show that the problem has no polynomial-time 2q(n)-approximation algorithm and no pseudopolynomial-time q(n)-approximation algorithm, where q(n) is any given polynomial of n. When preemption is allowed, we show that the problem with independent jobs can be solved in O(n log n) time with distinct release dates, but the weighted version is strongly NP-hard even with no release dates; the problems with weighted independent jobs or with jobs under precedence constraints are shown having polynomial-time n-approximation algorithms. We also establish the relationship of the approximability between the fixed job scheduling problem and the bin-packing problem.  相似文献   

20.
The single machine scheduling problem with two types of controllable parameters, job processing times and release dates, is studied. It is assumed that the cost of compressing processing times and release dates from their initial values is a linear function of the compression amounts. The objective is to minimize the sum of the total completion time of the jobs and the total compression cost. For the problem with equal release date compression costs we construct a reduction to the assignment problem. We demonstrate that if in addition the jobs have equal processing time compression costs, then it can be solved in O(n2) time. The solution algorithm can be considered as a generalization of the algorithm that minimizes the makespan and total compression cost. The generalized version of the algorithm is also applicable to the problem with parallel machines and to a range of due-date scheduling problems with controllable processing times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号